Henglin Mir, Stein Gillian, Hushcha Pavel V, Snoek Jasper, Wiltschko Alexander B, Cheng Susan
From the Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.H., G.S., P.V.H., S.C.); Google Brain, Google Inc, Cambridge, MA (J.S., A.W.); and Framingham Heart Study, MA (S.C.).
Circ Cardiovasc Imaging. 2017 Oct;10(10). doi: 10.1161/CIRCIMAGING.117.005614.
Cardiovascular imaging technologies continue to increase in their capacity to capture and store large quantities of data. Modern computational methods, developed in the field of machine learning, offer new approaches to leveraging the growing volume of imaging data available for analyses. Machine learning methods can now address data-related problems ranging from simple analytic queries of existing measurement data to the more complex challenges involved in analyzing raw images. To date, machine learning has been used in 2 broad and highly interconnected areas: automation of tasks that might otherwise be performed by a human and generation of clinically important new knowledge. Most cardiovascular imaging studies have focused on task-oriented problems, but more studies involving algorithms aimed at generating new clinical insights are emerging. Continued expansion in the size and dimensionality of cardiovascular imaging databases is driving strong interest in applying powerful deep learning methods, in particular, to analyze these data. Overall, the most effective approaches will require an investment in the resources needed to appropriately prepare such large data sets for analyses. Notwithstanding current technical and logistical challenges, machine learning and especially deep learning methods have much to offer and will substantially impact the future practice and science of cardiovascular imaging.
心血管成像技术捕捉和存储大量数据的能力持续提升。机器学习领域开发的现代计算方法,为利用日益增长的可用成像数据进行分析提供了新途径。机器学习方法如今能够解决与数据相关的各种问题,从对现有测量数据的简单分析查询到分析原始图像所涉及的更复杂挑战。迄今为止,机器学习已应用于两个广泛且高度相互关联的领域:自动化那些原本可能由人类执行的任务,以及生成具有临床重要性的新知识。大多数心血管成像研究都聚焦于面向任务的问题,但越来越多涉及旨在产生新临床见解的算法的研究正在涌现。心血管成像数据库规模和维度的持续扩大,引发了人们对应用强大的深度学习方法来分析这些数据的浓厚兴趣。总体而言,最有效的方法将需要投入资源,以适当准备此类大型数据集用于分析。尽管当前存在技术和后勤方面的挑战,但机器学习尤其是深度学习方法具有很大优势,并将对心血管成像的未来实践和科学产生重大影响。
Circ Cardiovasc Imaging. 2017-10
Methodist Debakey Cardiovasc J. 2020
Prog Cardiovasc Dis. 2020-3-19
J Am Coll Radiol. 2017-11-17
Circ J. 2019-6-29
J Cardiovasc Magn Reson. 2019-10-7
Methodist Debakey Cardiovasc J. 2020
JACC Cardiovasc Imaging. 2019-8
J Am Heart Assoc. 2025-4-15
Eur J Nucl Med Mol Imaging. 2025-2-20
Heliyon. 2024-8-26
Rev Cardiovasc Med. 2023-7-31
Am Heart J Plus. 2022-6-30
J Med Imaging (Bellingham). 2016-7
Med Image Anal. 2016-6-23
Mol Syst Biol. 2016-7-29
Int J Comput Assist Radiol Surg. 2016-9