文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

心血管成像中的机器学习方法

Machine Learning Approaches in Cardiovascular Imaging.

作者信息

Henglin Mir, Stein Gillian, Hushcha Pavel V, Snoek Jasper, Wiltschko Alexander B, Cheng Susan

机构信息

From the Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.H., G.S., P.V.H., S.C.); Google Brain, Google Inc, Cambridge, MA (J.S., A.W.); and Framingham Heart Study, MA (S.C.).

出版信息

Circ Cardiovasc Imaging. 2017 Oct;10(10). doi: 10.1161/CIRCIMAGING.117.005614.


DOI:10.1161/CIRCIMAGING.117.005614
PMID:28956772
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5718356/
Abstract

Cardiovascular imaging technologies continue to increase in their capacity to capture and store large quantities of data. Modern computational methods, developed in the field of machine learning, offer new approaches to leveraging the growing volume of imaging data available for analyses. Machine learning methods can now address data-related problems ranging from simple analytic queries of existing measurement data to the more complex challenges involved in analyzing raw images. To date, machine learning has been used in 2 broad and highly interconnected areas: automation of tasks that might otherwise be performed by a human and generation of clinically important new knowledge. Most cardiovascular imaging studies have focused on task-oriented problems, but more studies involving algorithms aimed at generating new clinical insights are emerging. Continued expansion in the size and dimensionality of cardiovascular imaging databases is driving strong interest in applying powerful deep learning methods, in particular, to analyze these data. Overall, the most effective approaches will require an investment in the resources needed to appropriately prepare such large data sets for analyses. Notwithstanding current technical and logistical challenges, machine learning and especially deep learning methods have much to offer and will substantially impact the future practice and science of cardiovascular imaging.

摘要

心血管成像技术捕捉和存储大量数据的能力持续提升。机器学习领域开发的现代计算方法,为利用日益增长的可用成像数据进行分析提供了新途径。机器学习方法如今能够解决与数据相关的各种问题,从对现有测量数据的简单分析查询到分析原始图像所涉及的更复杂挑战。迄今为止,机器学习已应用于两个广泛且高度相互关联的领域:自动化那些原本可能由人类执行的任务,以及生成具有临床重要性的新知识。大多数心血管成像研究都聚焦于面向任务的问题,但越来越多涉及旨在产生新临床见解的算法的研究正在涌现。心血管成像数据库规模和维度的持续扩大,引发了人们对应用强大的深度学习方法来分析这些数据的浓厚兴趣。总体而言,最有效的方法将需要投入资源,以适当准备此类大型数据集用于分析。尽管当前存在技术和后勤方面的挑战,但机器学习尤其是深度学习方法具有很大优势,并将对心血管成像的未来实践和科学产生重大影响。

相似文献

[1]
Machine Learning Approaches in Cardiovascular Imaging.

Circ Cardiovasc Imaging. 2017-10

[2]
Automation, machine learning, and artificial intelligence in echocardiography: A brave new world.

Echocardiography. 2018-9

[3]
Artificial Intelligence and Machine Learning in Cardiovascular Imaging.

Methodist Debakey Cardiovasc J. 2020

[4]
Applications of artificial intelligence in multimodality cardiovascular imaging: A state-of-the-art review.

Prog Cardiovasc Dis. 2020-3-19

[5]
Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease.

Cardiovasc Res. 2020-11-1

[6]
Machine Learning in Radiology: Applications Beyond Image Interpretation.

J Am Coll Radiol. 2017-11-17

[7]
Utilization of Artificial Intelligence in Echocardiography.

Circ J. 2019-6-29

[8]
Machine learning in cardiovascular magnetic resonance: basic concepts and applications.

J Cardiovasc Magn Reson. 2019-10-7

[9]
Artificial Intelligence in Cardiovascular Imaging.

Methodist Debakey Cardiovasc J. 2020

[10]
State-of-the-Art Deep Learning in Cardiovascular Image Analysis.

JACC Cardiovasc Imaging. 2019-8

引用本文的文献

[1]
Artificial Intelligence in Diagnosis of Heart Failure.

J Am Heart Assoc. 2025-4-15

[2]
Artificial intelligence-powered coronary artery disease diagnosis from SPECT myocardial perfusion imaging: a comprehensive deep learning study.

Eur J Nucl Med Mol Imaging. 2025-2-20

[3]
Deep Transfer Learning for Classification of Late Gadolinium Enhancement Cardiac MRI Images into Myocardial Infarction, Myocarditis, and Healthy Classes: Comparison with Subjective Visual Evaluation.

Diagnostics (Basel). 2025-1-17

[4]
AI Machine Learning-Based Diabetes Prediction in Older Adults in South Korea: Cross-Sectional Analysis.

JMIR Form Res. 2025-1-21

[5]
Super-resolution left ventricular flow and pressure mapping by Navier-Stokes-informed neural networks.

Comput Biol Med. 2025-2

[6]
Machines Running for Phenotyping of Myocardial Injury: The End to an  Conundrum?

JACC Adv. 2024-6-19

[7]
AI in interventional cardiology: Innovations and challenges.

Heliyon. 2024-8-26

[8]
The Use of Artificial Intelligence for Detecting and Predicting Atrial Arrhythmias Post Catheter Ablation.

Rev Cardiovasc Med. 2023-7-31

[9]
Super-resolution Left Ventricular Flow and Pressure Mapping by Navier-Stokes-Informed Neural Networks.

bioRxiv. 2024-4-15

[10]
Trends in cardiology and oncology artificial intelligence publications.

Am Heart J Plus. 2022-6-30

本文引用的文献

[1]
Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework.

Sci Rep. 2017-5-10

[2]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

[3]
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.

JAMA. 2016-12-13

[4]
Beatquency domain and machine learning improve prediction of cardiovascular death after acute coronary syndrome.

Sci Rep. 2016-10-6

[5]
Automatic pericardium segmentation and quantification of epicardial fat from computed tomography angiography.

J Med Imaging (Bellingham). 2016-7

[6]
Machine learning approaches in medical image analysis: From detection to diagnosis.

Med Image Anal. 2016-6-23

[7]
Deep learning for computational biology.

Mol Syst Biol. 2016-7-29

[8]
Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis.

Eur Heart J. 2017-2-14

[9]
Regional infarction identification from cardiac CT images: a computer-aided biomechanical approach.

Int J Comput Assist Radiol Surg. 2016-9

[10]
Combination of single quantitative parameters into multiparametric model for ischemia detection is not superior to visual assessment during dobutamine stress echocardiography.

Cardiovasc Ultrasound. 2016-4-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索