Suppr超能文献

ZPRED:预测α-螺旋膜蛋白中残基到膜中心的距离

ZPRED: predicting the distance to the membrane center for residues in alpha-helical membrane proteins.

作者信息

Granseth Erik, Viklund Håkan, Elofsson Arne

机构信息

Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden.

出版信息

Bioinformatics. 2006 Jul 15;22(14):e191-6. doi: 10.1093/bioinformatics/btl206.

Abstract

MOTIVATION

Prediction methods are of great importance for membrane proteins as experimental information is harder to obtain than for globular proteins. As more membrane protein structures are solved it is clear that topology information only provides a simplified picture of a membrane protein. Here, we describe a novel challenge for the prediction of alpha-helical membrane proteins: to predict the distance between a residue and the center of the membrane, a measure we define as the Z-coordinate. Even though the traditional way of depicting membrane protein topology is useful, it is advantageous to have a measure that is based on a more "physical" property such as the Z-coordinate, since it implicitly contains information about re-entrant helices, interfacial helices, the tilt of a transmembrane helix and loop lengths.

RESULTS

We show that the Z-coordinate can be predicted using either artificial neural networks, hidden Markov models or combinations of both. The best method, ZPRED, uses the output from a hidden Markov model together with a neural network. The average error of ZPRED is 2.55A and 68.6% of the residues are predicted within 3A of the target Z-coordinate in the 5-25A region. ZPRED is also able to predict the maximum protrusion of a loop to within 3A for 78% of the loops in the dataset.

AVAILABILITY

Supplementary information and training data is available at http://www.sbc.su.se/~erikgr/.

摘要

动机

预测方法对于膜蛋白非常重要,因为与球状蛋白相比,获取膜蛋白的实验信息更加困难。随着越来越多的膜蛋白结构得到解析,很明显拓扑信息仅提供了膜蛋白的简化图像。在此,我们描述了预测α-螺旋膜蛋白的一个新挑战:预测一个残基与膜中心之间的距离,我们将此距离定义为Z坐标。尽管传统的描绘膜蛋白拓扑结构的方法很有用,但基于更“物理”性质(如Z坐标)的测量方法更具优势,因为它隐含地包含了关于折返螺旋、界面螺旋、跨膜螺旋的倾斜度和环长度的信息。

结果

我们表明,可以使用人工神经网络、隐马尔可夫模型或两者的组合来预测Z坐标。最佳方法ZPRED使用隐马尔可夫模型的输出与神经网络相结合。ZPRED的平均误差为2.55埃,在5 - 25埃区域内,68.6%的残基预测值与目标Z坐标的偏差在3埃以内。对于数据集中78%的环,ZPRED还能够将环的最大突出度预测在3埃以内。

可用性

补充信息和训练数据可在http://www.sbc.su.se/~erikgr/获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验