Suppr超能文献

古细菌细胞中一种假定的病毒防御机制。

A putative viral defence mechanism in archaeal cells.

作者信息

Lillestøl Reidun K, Redder Peter, Garrett Roger A, Brügger Kim

机构信息

Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK 1307 Copenhagen K, Denmark.

出版信息

Archaea. 2006 Aug;2(1):59-72. doi: 10.1155/2006/542818.

Abstract

Clusters of regularly spaced direct repeats, separated by unconserved spacer sequences, are ubiquitous in archaeal chromosomes and occur in some plasmids. Some clusters constitute around 1% of chromosomal DNA. Similarly structured clusters, generally smaller, also occur in some bacterial chromosomes. Although early studies implicated these clusters in segregation/partition functions, recent evidence suggests that the spacer sequences derive from extrachromosomal elements, and, primarily, viruses. This has led to the proposal that the clusters provide a defence against viral propagation in cells, and that both the mode of inhibition of viral propagation and the mechanism of adding spacer-repeat units to clusters, are dependent on RNAs transcribed from the clusters. Moreover, the putative inhibitory apparatus (piRNA-based) may be evolutionarily related to the interference RNA systems (siRNA and miRNA), which are common in eukarya. Here, we analyze all the current data on archaeal repeat clusters and provide some new insights into their diverse structures, transcriptional properties and mode of structural development. The results are consistent with larger cluster transcripts being processed at the centers of the repeat sequences and being further trimmed by exonucleases to yield a dominant, intracellular RNA species, which corresponds approximately to the size of a spacer. Furthermore, analysis of the extensive clusters of Sulfolobus solfataricus strains P1 and P2B provides support for the presence of a flanking sequence adjoining a cluster being a prerequisite for the incorporation of new spacer-repeat units, which occurs between the flanking sequence and the cluster. An archaeal database summarizing the data will be maintained at http://dac.molbio.ku.dk/dbs/SRSR/.

摘要

由不保守的间隔序列分隔开的规则间隔直接重复序列簇在古菌染色体中普遍存在,并且在一些质粒中也会出现。一些重复序列簇约占染色体DNA的1%。结构相似但通常较小的重复序列簇也存在于一些细菌染色体中。尽管早期研究认为这些重复序列簇具有分离/分配功能,但最近的证据表明间隔序列源自染色体外元件,主要是病毒。这就提出了一个观点,即这些重复序列簇为细胞中的病毒传播提供了一种防御机制,并且病毒传播的抑制模式以及向重复序列簇中添加间隔-重复单元的机制都依赖于从这些重复序列簇转录的RNA。此外,假定的抑制装置(基于piRNA)可能在进化上与真核生物中常见的干扰RNA系统(siRNA和miRNA)相关。在这里,我们分析了关于古菌重复序列簇的所有现有数据,并对它们的多样结构、转录特性和结构发育模式提供了一些新的见解。结果表明,较大的簇转录本在重复序列的中心进行加工,并被核酸外切酶进一步修剪,以产生一种占主导地位的细胞内RNA种类,其大小大约与一个间隔序列相当。此外,对嗜热栖热菌菌株P1和P2B的广泛重复序列簇的分析支持这样一种观点,即簇相邻的侧翼序列是新间隔-重复单元掺入的先决条件,新单元的掺入发生在侧翼序列和簇之间。一个总结这些数据的古菌数据库将保存在http://dac.molbio.ku.dk/dbs/SRSR/

相似文献

1
A putative viral defence mechanism in archaeal cells.
Archaea. 2006 Aug;2(1):59-72. doi: 10.1155/2006/542818.
3
CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties.
Mol Microbiol. 2009 Apr;72(1):259-72. doi: 10.1111/j.1365-2958.2009.06641.x. Epub 2009 Feb 23.
5
Evolutionary conservation of sequence and secondary structures in CRISPR repeats.
Genome Biol. 2007;8(4):R61. doi: 10.1186/gb-2007-8-4-r61.
7
CRISPR/Cas, the immune system of bacteria and archaea.
Science. 2010 Jan 8;327(5962):167-70. doi: 10.1126/science.1179555.
8
Virus population dynamics and acquired virus resistance in natural microbial communities.
Science. 2008 May 23;320(5879):1047-50. doi: 10.1126/science.1157358.
9
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements.
J Mol Evol. 2005 Feb;60(2):174-82. doi: 10.1007/s00239-004-0046-3.
10
Genomic comparison of archaeal conjugative plasmids from Sulfolobus.
Archaea. 2004 Oct;1(4):231-9. doi: 10.1155/2004/151926.

引用本文的文献

4
Genetic and technological diversity of isolated from the Saint-Nectaire PDO cheese-producing area.
Front Microbiol. 2023 Nov 14;14:1245510. doi: 10.3389/fmicb.2023.1245510. eCollection 2023.
5
Reconstruction of Archaeal Genomes from Short-Read Metagenomes.
Methods Mol Biol. 2022;2522:487-527. doi: 10.1007/978-1-0716-2445-6_33.
6
Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR.
Methods Mol Biol. 2022;2495:29-46. doi: 10.1007/978-1-0716-2301-5_2.
7
Diversity of Human-Associated Bifidobacterial Prophage Sequences.
Microorganisms. 2021 Dec 10;9(12):2559. doi: 10.3390/microorganisms9122559.
8
Pruning and Tending Immune Memories: Spacer Dynamics in the CRISPR Array.
Front Microbiol. 2021 Apr 1;12:664299. doi: 10.3389/fmicb.2021.664299. eCollection 2021.
10
CRISPR-Cas adaptive immune systems in Sulfolobales: genetic studies and molecular mechanisms.
Sci China Life Sci. 2021 May;64(5):678-696. doi: 10.1007/s11427-020-1745-0. Epub 2020 Oct 29.

本文引用的文献

1
Mutations and rearrangements in the genome of Sulfolobus solfataricus P2.
J Bacteriol. 2006 Jun;188(12):4198-206. doi: 10.1128/JB.00061-06.
2
Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle.
J Mol Biol. 2006 Jun 23;359(5):1203-16. doi: 10.1016/j.jmb.2006.04.027. Epub 2006 Apr 27.
3
pIT3, a cryptic plasmid isolated from the hyperthermophilic crenarchaeon Sulfolobus solfataricus IT3.
Plasmid. 2006 Jul;56(1):35-45. doi: 10.1016/j.plasmid.2006.02.002. Epub 2006 Apr 19.
4
The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes.
J Mol Evol. 2006 Jun;62(6):718-29. doi: 10.1007/s00239-005-0223-z. Epub 2006 Apr 11.
6
His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus.
Virology. 2006 Jun 20;350(1):228-39. doi: 10.1016/j.virol.2006.02.005. Epub 2006 Mar 10.
7
A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes.
PLoS Comput Biol. 2005 Nov;1(6):e60. doi: 10.1371/journal.pcbi.0010060. Epub 2005 Nov 11.
8
Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis.
Genome Res. 2005 Oct;15(10):1336-43. doi: 10.1101/gr.3952905. Epub 2005 Sep 16.
9
Virology: independent virus development outside a host.
Nature. 2005 Aug 25;436(7054):1101-2. doi: 10.1038/4361101a.
10
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.
Microbiology (Reading). 2005 Aug;151(Pt 8):2551-2561. doi: 10.1099/mic.0.28048-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验