Suppr超能文献

来自火箭状珠子的肌动蛋白彗星的变形。

Deformations in actin comets from rocketing beads.

作者信息

Paluch Ewa, van der Gucht Jasper, Joanny Jean-François, Sykes Cécile

机构信息

Laboratoire Physico-Chimie Curie, UMR 168, Institut Curie/Centre National de la Recherche Scientifique/University Paris 6th, Paris, France.

出版信息

Biophys J. 2006 Oct 15;91(8):3113-22. doi: 10.1529/biophysj.106.088054. Epub 2006 Jul 28.

Abstract

The mechanical and dynamical properties of the actin network are essential for many cellular processes like motility or division, and there is a growing body of evidence that they are also important for adhesion and trafficking. The leading edge of migrating cells is pushed out by the polymerization of actin networks, a process orchestrated by cross-linkers and other actin-binding proteins. In vitro physical characterizations show that these same proteins control the elastic properties of actin gels. Here we use a biomimetic system of Listeria monocytogenes, beads coated with an activator of actin polymerization, to assess the role of various actin-binding proteins in propulsion. We find that the properties of actin-based movement are clearly affected by the presence of cross-linkers. By monitoring the evolution of marked parts of the comet, we provide direct experimental evidence that the actin gel continuously undergoes deformations during the growth of the comet. Depending on the protein composition in the motility medium, deformations arise from either gel elasticity or monomer diffusion through the actin comet. Our findings demonstrate that actin-based movement is governed by the mechanical properties of the actin network, which are fine-tuned by proteins involved in actin dynamics and assembly.

摘要

肌动蛋白网络的力学和动力学特性对于许多细胞过程(如运动或分裂)至关重要,并且越来越多的证据表明它们对于黏附与运输也很重要。迁移细胞的前沿由肌动蛋白网络的聚合作用推出,这一过程由交联蛋白和其他肌动蛋白结合蛋白精心调控。体外物理特性表明,这些相同的蛋白质控制着肌动蛋白凝胶的弹性特性。在这里,我们使用一种模仿单核细胞增生李斯特菌的仿生系统,即涂有肌动蛋白聚合激活剂的珠子,来评估各种肌动蛋白结合蛋白在推进过程中的作用。我们发现基于肌动蛋白的运动特性明显受到交联蛋白的影响。通过监测彗星标记部分的演变,我们提供了直接的实验证据,表明肌动蛋白凝胶在彗星生长过程中持续发生变形。根据运动介质中的蛋白质组成,变形要么源于凝胶弹性,要么源于单体通过肌动蛋白彗星的扩散。我们的研究结果表明,基于肌动蛋白的运动受肌动蛋白网络的力学特性支配,而这些特性由参与肌动蛋白动力学和组装的蛋白质进行微调。

相似文献

1
Deformations in actin comets from rocketing beads.
Biophys J. 2006 Oct 15;91(8):3113-22. doi: 10.1529/biophysj.106.088054. Epub 2006 Jul 28.
2
Mechanism of actin-based motility.
Science. 2001 May 25;292(5521):1502-6. doi: 10.1126/science.1059975.
3
Soft Listeria: actin-based propulsion of liquid drops.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061906. doi: 10.1103/PhysRevE.69.061906. Epub 2004 Jun 2.
4
Actin-based motility as a self-organized system: mechanism and reconstitution in vitro.
C R Biol. 2003 Feb;326(2):161-70. doi: 10.1016/s1631-0691(03)00067-2.
5
The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth.
Eur Biophys J. 2004 Jul;33(4):310-20. doi: 10.1007/s00249-003-0370-3. Epub 2003 Dec 9.
7
A crucial role for profilin-actin in the intracellular motility of Listeria monocytogenes.
EMBO Rep. 2003 May;4(5):523-9. doi: 10.1038/sj.embor.embor823.
8
9
The dynamics of actin-based motility depend on surface parameters.
Nature. 2002 May 16;417(6886):308-11. doi: 10.1038/417308a.
10
Choosing orientation: influence of cargo geometry and ActA polarization on actin comet tails.
Mol Biol Cell. 2012 Feb;23(4):614-29. doi: 10.1091/mbc.E11-06-0584. Epub 2012 Jan 4.

引用本文的文献

1
Reconstituted systems for studying the architecture and dynamics of actin networks.
Biochem J. 2025 May 23;482(11):691-708. doi: 10.1042/BCJ20253044.
2
Programmable DNA-augmented hydrogels for controlled activation of human lymphocytes.
Nanomedicine. 2021 Oct;37:102442. doi: 10.1016/j.nano.2021.102442. Epub 2021 Jul 17.
3
Triggering signaling pathways using F-actin self-organization.
Sci Rep. 2016 Oct 4;6:34657. doi: 10.1038/srep34657.
4
How actin network dynamics control the onset of actin-based motility.
Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14440-5. doi: 10.1073/pnas.1117096109. Epub 2012 Aug 20.
5
Actin filament attachments for sustained motility in vitro are maintained by filament bundling.
PLoS One. 2012;7(2):e31385. doi: 10.1371/journal.pone.0031385. Epub 2012 Feb 16.
6
A model actin comet tail disassembling by severing.
Phys Biol. 2011 Aug;8(4):046003. doi: 10.1088/1478-3975/8/4/046003. Epub 2011 May 12.
7
Force generation of curved actin gels characterized by combined AFM-epifluorescence measurements.
Biophys J. 2010 May 19;98(10):2246-53. doi: 10.1016/j.bpj.2010.01.055.
8
Effects of molecular-scale processes on observable growth properties of actin networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):031914. doi: 10.1103/PhysRevE.81.031914. Epub 2010 Mar 22.
9
Cell biology: actin filaments up against a wall.
Nature. 2010 Mar 18;464(7287):365-6. doi: 10.1038/464365a.
10
Physical model of cellular symmetry breaking.
Cold Spring Harb Perspect Biol. 2009 Jul;1(1):a001909. doi: 10.1101/cshperspect.a001909.

本文引用的文献

1
Diffusion rate limitations in actin-based propulsion of hard and deformable particles.
Biophys J. 2006 Aug 15;91(4):1548-63. doi: 10.1529/biophysj.106.082362. Epub 2006 May 26.
2
On the edge: modeling protrusion.
Curr Opin Cell Biol. 2006 Feb;18(1):32-9. doi: 10.1016/j.ceb.2005.11.001. Epub 2005 Nov 28.
3
Stress release drives symmetry breaking for actin-based movement.
Proc Natl Acad Sci U S A. 2005 May 31;102(22):7847-52. doi: 10.1073/pnas.0502121102. Epub 2005 May 23.
4
The actin slingshot.
Curr Opin Cell Biol. 2005 Feb;17(1):62-6. doi: 10.1016/j.ceb.2004.12.001.
5
Soft Listeria: actin-based propulsion of liquid drops.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061906. doi: 10.1103/PhysRevE.69.061906. Epub 2004 Jun 2.
6
Role of tensile stress in actin gels and a symmetry-breaking instability.
Eur Phys J E Soft Matter. 2004 Mar;13(3):247-59. doi: 10.1140/epje/i2003-10073-y.
7
Forces generated during actin-based propulsion: a direct measurement by micromanipulation.
Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5992-7. doi: 10.1073/pnas.0307704101. Epub 2004 Apr 12.
8
The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth.
Eur Biophys J. 2004 Jul;33(4):310-20. doi: 10.1007/s00249-003-0370-3. Epub 2003 Dec 9.
10
Compression forces generated by actin comet tails on lipid vesicles.
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6493-8. doi: 10.1073/pnas.1031670100. Epub 2003 May 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验