Suppr超能文献

基于肌动蛋白的硬颗粒和可变形颗粒推进中的扩散速率限制

Diffusion rate limitations in actin-based propulsion of hard and deformable particles.

作者信息

Dickinson Richard B, Purich Daniel L

机构信息

Department of Chemical Engineering, University of Florida Colleges of Engineering and Medicine, Gainesville, Florida 32611-6005, USA.

出版信息

Biophys J. 2006 Aug 15;91(4):1548-63. doi: 10.1529/biophysj.106.082362. Epub 2006 May 26.

Abstract

The mechanism by which actin polymerization propels intracellular vesicles and invasive microorganisms remains an open question. Several recent quantitative studies have examined propulsion of biomimetic particles such as polystyrene microspheres, phospholipid vesicles, and oil droplets. In addition to allowing quantitative measurement of parameters such as the dependence of particle speed on its size, these systems have also revealed characteristic behaviors such a saltatory motion of hard particles and oscillatory deformation of soft particles. Such measurements and observations provide tests for proposed mechanisms of actin-based motility. In the actoclampin filament end-tracking motor model, particle-surface-bound filament end-tracking proteins are involved in load-insensitive processive insertion of actin subunits onto elongating filament plus-ends that are persistently tethered to the surface. In contrast, the tethered-ratchet model assumes working filaments are untethered and the free-ended filaments grow as thermal ratchets in a load-sensitive manner. This article presents a model for the diffusion and consumption of actin monomers during actin-based particle propulsion to predict the monomer concentration field around motile particles. The results suggest that the various behaviors of biomimetic particles, including dynamic saltatory motion of hard particles and oscillatory vesicle deformations, can be quantitatively and self-consistently explained by load-insensitive, diffusion-limited elongation of (+)-end-tethered actin filaments, consistent with predictions of the actoclampin filament-end tracking mechanism.

摘要

肌动蛋白聚合推动细胞内囊泡和侵袭性微生物的机制仍然是一个悬而未决的问题。最近的几项定量研究考察了聚苯乙烯微球、磷脂囊泡和油滴等仿生颗粒的推进情况。除了能够对颗粒速度对其大小的依赖性等参数进行定量测量外,这些系统还揭示了一些特征行为,如硬颗粒的跳跃运动和软颗粒的振荡变形。此类测量和观察为基于肌动蛋白的运动机制提供了检验。在肌动蛋白钳丝端追踪马达模型中,颗粒表面结合的丝端追踪蛋白参与了肌动蛋白亚基向持续附着于表面的伸长丝正端的负载不敏感的连续插入过程。相比之下,拴系棘轮模型假定工作丝是未拴系的,自由端丝以负载敏感的方式作为热棘轮生长。本文提出了一个基于肌动蛋白的颗粒推进过程中肌动蛋白单体扩散和消耗的模型,以预测运动颗粒周围的单体浓度场。结果表明,仿生颗粒的各种行为,包括硬颗粒的动态跳跃运动和囊泡的振荡变形,可以通过对(+)端拴系的肌动蛋白丝进行负载不敏感、扩散受限的伸长来进行定量且自洽的解释,这与肌动蛋白钳丝端追踪机制的预测一致。

相似文献

4
Mechanics model for actin-based motility.基于肌动蛋白的运动力学模型。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 1):021916. doi: 10.1103/PhysRevE.79.021916. Epub 2009 Feb 26.
6
Actin-based propulsion of a microswimmer.基于肌动蛋白的微游动器推进
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jul;74(1 Pt 1):012901. doi: 10.1103/PhysRevE.74.012901. Epub 2006 Jul 21.
7
Soft Listeria: actin-based propulsion of liquid drops.软质李斯特菌:基于肌动蛋白的液滴推进。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jun;69(6 Pt 1):061906. doi: 10.1103/PhysRevE.69.061906. Epub 2004 Jun 2.
9
Contractile stress generation by actomyosin gels.肌动球蛋白凝胶产生收缩应力。
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov;74(5 Pt 1):051912. doi: 10.1103/PhysRevE.74.051912. Epub 2006 Nov 17.

引用本文的文献

1
The Actin Cytoskeleton and Actin-Based Motility.肌动蛋白细胞骨架和基于肌动蛋白的运动。
Cold Spring Harb Perspect Biol. 2018 Jan 2;10(1):a018267. doi: 10.1101/cshperspect.a018267.
2
Actin Turnover in Lamellipodial Fragments.片状伪足片段中的肌动蛋白周转。
Curr Biol. 2017 Oct 9;27(19):2963-2973.e14. doi: 10.1016/j.cub.2017.08.066. Epub 2017 Sep 28.
3
Exploring the inhibitory effect of membrane tension on cell polarization.探索膜张力对细胞极化的抑制作用。
PLoS Comput Biol. 2017 Jan 30;13(1):e1005354. doi: 10.1371/journal.pcbi.1005354. eCollection 2017 Jan.
6
Cell spreading as a hydrodynamic process.细胞铺展作为一种流体动力学过程。
Soft Matter. 2010 Aug 10;6:4788-4799. doi: 10.1039/c0sm00252.
9
Effects of molecular-scale processes on observable growth properties of actin networks.分子尺度过程对肌动蛋白网络可观测生长特性的影响。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Mar;81(3 Pt 1):031914. doi: 10.1103/PhysRevE.81.031914. Epub 2010 Mar 22.

本文引用的文献

3
Model of formin-associated actin filament elongation.formin相关肌动蛋白丝伸长模型。
Mol Cell. 2006 Feb 17;21(4):455-66. doi: 10.1016/j.molcel.2006.01.016.
4
Actin-dependent movement of bacterial pathogens.细菌病原体的肌动蛋白依赖性运动。
Nat Rev Microbiol. 2006 Feb;4(2):91-101. doi: 10.1038/nrmicro1320.
5
7
Adhesion controls bacterial actin polymerization-based movement.黏附作用控制基于细菌肌动蛋白聚合的运动。
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16233-8. doi: 10.1073/pnas.0507022102. Epub 2005 Oct 26.
9
Mechanism of actin-based motility: a dynamic state diagram.基于肌动蛋白的运动机制:动态状态图
Biophys J. 2005 Aug;89(2):1411-9. doi: 10.1529/biophysj.104.055822. Epub 2005 May 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验