Physikalische Chemie II, Universität Bayreuth, Bayreuth, Germany.
Biophys J. 2010 May 19;98(10):2246-53. doi: 10.1016/j.bpj.2010.01.055.
Polymerization of actin into branched filaments is the driving force behind active migration of eukaryotic cells and motility of intracellular organelles. The site-directed assembly of a polarized branched array forms an expanding gel that generates the force that pushes the membrane. Here, we use atomic force microscopy to understand the relation between actin polymerization and the produced force. Functionalized spherical colloidal probes of varying size and curvature are attached to the atomic force microscopy cantilever and initiate the formation of a polarized actin gel in a solution mimicking the in vivo context. The gel growth is recorded by epifluorescence microscopy both against the cantilever and in the perpendicular (lateral) nonconstrained direction. In this configuration, the gel growth stops simultaneously in both directions at the stall force, which corresponds to a pressure of 0.15 nN/microm(2). The results show that the growth of the gel is limited laterally, in the absence of external force, by internal mechanical stresses resulting from a combination of the curved geometry and the molecular mechanism of site-directed assembly of a cohesive branched filament array.
肌动蛋白的聚合形成分支丝状结构是真核细胞的主动迁移和细胞内细胞器运动的驱动力。有向性分支丝状结构的定向组装形成了一个扩展的凝胶,产生的力推动细胞膜运动。在这里,我们使用原子力显微镜来了解肌动蛋白聚合和产生的力之间的关系。功能化的球形胶体探针具有不同的大小和曲率,附着在原子力显微镜悬臂上,在模拟体内环境的溶液中引发极化肌动蛋白凝胶的形成。凝胶的生长通过荧光显微镜在悬臂上和垂直(侧向)非约束方向上进行记录。在这种配置下,凝胶在两个方向上同时在停止力处停止生长,这对应于 0.15 nN/microm(2)的压力。结果表明,在没有外力的情况下,凝胶的生长在侧向受到限制,这是由弯曲几何形状和有向性组装粘性分支丝状结构的分子机制共同作用产生的内部机械应力造成的。