Suppr超能文献

啮齿动物视交叉上核神经元的细胞内电生理研究:兴奋性突触机制

Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: excitatory synaptic mechanisms.

作者信息

Kim Y I, Dudek F E

机构信息

Mental Retardation Research Center, UCLA School of Medicine 90024.

出版信息

J Physiol. 1991 Dec;444:269-87. doi: 10.1113/jphysiol.1991.sp018877.

Abstract
  1. To study the synaptic mechanisms of excitatory transmission in the suprachiasmatic nucleus (SCN), we assessed the effects of excitatory amino acid receptor antagonists on excitatory postsynaptic potentials (EPSPs) recorded from SCN neurons in horizontal and parasagittal hypothalamic slice preparations from rats and guinea-pigs. The EPSPs were evoked by electrical stimulation of either optic nerve or a site near the SCN. 2. When evoked at membrane potentials between -60 and -100 mV, the EPSPs from optic nerve stimulation were conventional in shape; they rose to the peak quickly (6.2 +/- 0.5 ms, mean +/- S.E.M.; n = 45) and decayed gradually over 50-250 ms. When evoked at membrane potentials between -20 and -55 mV after blockade of outward K+ currents and fast Na+ spikes by intracellular injection of Cs+ and QX-314 (n = 5 neurons), a slow depolarizing potential emerged near the fast peak of the EPSP. This slow potential, unlike the fast peak, was not linearly related to membrane potential. 3. An antagonist for kainate- and quisqualate-type excitatory amino acid receptors, 6,7-dinitroquinoxaline-2,3-dione (DNQX 1-10 microM), depressed in a concentration-dependent and reversible manner the EPSPs evoked by optic nerve stimulation at membrane potentials between -60 and -100 mV (n = 9). The effects of DNQX were not associated with any significant changes in the baseline input resistance or membrane potential of the postsynaptic neurons. The selective N-methyl-D-aspartate (NMDA) receptor antagonist, DL-2-amino-5-phosphonopentanoic acid (AP5, 50-100 microM), did not affect significantly and consistently the EPSPs evoked at these membrane potentials (n = 7). On the other hand, AP5 (50 microM) blocked or depressed the slow depolarizing component of the EPSPs evoked at membrane potentials between -20 and -55 mV (n = 4). No significant changes in baseline input resistance or membrane potential accompanied the effects of AP5. 4. Stimulation of a site lateral or dorsocaudal to the SCN evoked EPSPs distinct from those evoked by optic nerve stimulation. Again, DNQX (0.3-10 microM) depressed the EPSPs evoked at membrane potentials between -60 and -100 mV (n = 4) whereas AP5 (50 microM) had no effect (n = 5). When evoked at less negative membrane potentials (i.e. -20 to -55 mV) after intracellular injection of Cs+ and QX-314, the EPSPs had a slow depolarizing potential, similar to the EPSPs from optic nerve stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
摘要
  1. 为研究视交叉上核(SCN)中兴奋性传递的突触机制,我们评估了兴奋性氨基酸受体拮抗剂对从大鼠和豚鼠下丘脑水平及矢状旁切片制备物中SCN神经元记录到的兴奋性突触后电位(EPSP)的影响。EPSP由视神经或SCN附近部位的电刺激诱发。2. 当在-60至-100 mV的膜电位诱发时,视神经刺激产生的EPSP形状正常;它们迅速上升至峰值(6.2±0.5毫秒,平均值±标准误;n = 45),并在50 - 250毫秒内逐渐衰减。在通过细胞内注射Cs⁺和QX - 314阻断外向K⁺电流和快速Na⁺尖峰后,当在-20至-55 mV的膜电位诱发时(n = 5个神经元),在EPSP的快速峰值附近出现一个缓慢的去极化电位。这个缓慢电位与快速峰值不同,与膜电位并非呈线性关系。3. 一种针对海人酸和quisqualate型兴奋性氨基酸受体的拮抗剂,6,7 - 二硝基喹喔啉 - 2,3 - 二酮(DNQX,1 - 10微摩尔),以浓度依赖性和可逆的方式抑制在-60至-100 mV膜电位下由视神经刺激诱发的EPSP(n = 9)。DNQX的作用与突触后神经元的基线输入电阻或膜电位的任何显著变化无关。选择性N - 甲基 - D - 天冬氨酸(NMDA)受体拮抗剂,DL - 2 - 氨基 - 5 - 膦酰戊酸(AP5,50 - 100微摩尔),在这些膜电位下并未显著且一致地影响诱发的EPSP(n = 7)。另一方面,AP5(50微摩尔)阻断或抑制了在-20至-55 mV膜电位下诱发的EPSP的缓慢去极化成分(n = 4)。AP5的作用未伴随基线输入电阻或膜电位的显著变化。4. 刺激SCN外侧或背尾侧部位诱发的EPSP与视神经刺激诱发的不同。同样,DNQX(0.3 - 10微摩尔)抑制在-60至-100 mV膜电位下诱发的EPSP(n = 4),而AP5(50微摩尔)无作用(n = 5)。在细胞内注射Cs⁺和QX - 314后,当在较负的膜电位(即-20至-55 mV)诱发时,EPSP有一个缓慢的去极化电位,类似于视神经刺激产生的EPSP。(摘要截断于400字)

相似文献

3
Excitatory transmission in the basolateral amygdala.
J Neurophysiol. 1991 Sep;66(3):986-98. doi: 10.1152/jn.1991.66.3.986.
6
Excitatory synaptic transmission in cultures of rat olfactory bulb.
J Neurophysiol. 1990 Aug;64(2):598-606. doi: 10.1152/jn.1990.64.2.598.
7
Synaptic responses of guinea pig and rat central amygdala neurons in vitro.
J Neurophysiol. 1991 May;65(5):1227-41. doi: 10.1152/jn.1991.65.5.1227.
8
Inhibitory transmission in the basolateral amygdala.
J Neurophysiol. 1991 Sep;66(3):999-1009. doi: 10.1152/jn.1991.66.3.999.
9
Sensory input and burst firing output of rat and cat thalamocortical cells: the role of NMDA and non-NMDA receptors.
J Physiol. 1994 Oct 15;480 ( Pt 2)(Pt 2):281-95. doi: 10.1113/jphysiol.1994.sp020359.
10
Kindling-induced long-lasting changes in synaptic transmission in the basolateral amygdala.
J Neurophysiol. 1992 Feb;67(2):443-54. doi: 10.1152/jn.1992.67.2.443.

引用本文的文献

1
Impact of Modern Lifestyle on Circadian Health and Its Contribution to Adipogenesis and Cancer Risk.
Cancers (Basel). 2024 Nov 1;16(21):3706. doi: 10.3390/cancers16213706.
2
Circadian rhythm mechanism in the suprachiasmatic nucleus and its relation to the olfactory system.
Front Neural Circuits. 2024 Mar 25;18:1385908. doi: 10.3389/fncir.2024.1385908. eCollection 2024.
3
Activation of mGluR1 negatively modulates glutamate-induced phase shifts of the circadian pacemaker in the mouse suprachiasmatic nucleus.
Neurobiol Sleep Circadian Rhythms. 2023 Feb 19;14:100089. doi: 10.1016/j.nbscr.2023.100089. eCollection 2023 May.
4
Intrinsically photosensitive retinal ganglion cell-driven pupil responses in patients with traumatic brain injury.
Vision Res. 2021 Nov;188:174-183. doi: 10.1016/j.visres.2021.07.007. Epub 2021 Aug 2.
5
Altered Light Sensitivity of Circadian Clock in Shank3 Mouse.
Front Neurosci. 2021 Feb 18;15:604165. doi: 10.3389/fnins.2021.604165. eCollection 2021.
6
Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability.
Physiol Rev. 2020 Oct 1;100(4):1415-1454. doi: 10.1152/physrev.00027.2019. Epub 2020 Mar 12.
8
The anterior paraventricular thalamus modulates neuronal excitability in the suprachiasmatic nuclei of the rat.
Eur J Neurosci. 2015 Nov;42(10):2833-42. doi: 10.1111/ejn.13088. Epub 2015 Nov 2.
9
Impaired circadian photosensitivity in mice lacking glutamate transmission from retinal melanopsin cells.
J Biol Rhythms. 2015 Feb;30(1):35-41. doi: 10.1177/0748730414561545. Epub 2014 Dec 15.
10
Linking neural activity and molecular oscillations in the SCN.
Nat Rev Neurosci. 2011 Sep 2;12(10):553-69. doi: 10.1038/nrn3086.

本文引用的文献

4
Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones.
Nature. 1984;309(5965):261-3. doi: 10.1038/309261a0.
5
Magnesium gates glutamate-activated channels in mouse central neurones.
Nature. 1984;307(5950):462-5. doi: 10.1038/307462a0.
6
Regulation of circadian rhythmicity.
Science. 1982 Sep 17;217(4565):1104-11. doi: 10.1126/science.6287576.
9
The hypothalamic suprachiasmatic nucleus of rat: intrinsic anatomy.
J Comp Neurol. 1980 Jun 15;191(4):661-702. doi: 10.1002/cne.901910410.
10
Voltage-clamp analysis of mossy fiber synaptic input to hippocampal neurons.
J Neurophysiol. 1983 Aug;50(2):487-507. doi: 10.1152/jn.1983.50.2.487.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验