Suppr超能文献

磷酸甘露糖变位酶/磷酸葡萄糖变位酶与一种缓慢底物及一种抑制剂的复合物。

Complexes of the enzyme phosphomannomutase/phosphoglucomutase with a slow substrate and an inhibitor.

作者信息

Regni Catherine, Shackelford Grant S, Beamer Lesa J

机构信息

Department of Structural Biology, St Jude Children's Research Hospital, 332 North Lauderdale M/S 311, Memphis, TN 38105, USA.

出版信息

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Aug 1;62(Pt 8):722-6. doi: 10.1107/S1744309106025887. Epub 2006 Jul 24.

Abstract

Two complexes of the enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa with a slow substrate and with an inhibitor have been characterized by X-ray crystallography. Both ligands induce an interdomain rearrangement in the enzyme that creates a highly buried active site. Comparisons with enzyme-substrate complexes show that the inhibitor xylose 1-phosphate utilizes many of the previously observed enzyme-ligand interactions. In contrast, analysis of the ribose 1-phosphate complex reveals a combination of new and conserved enzyme-ligand interactions for binding. The ability of PMM/PGM to accommodate these two pentose phosphosugars in its active site may be relevant for future efforts towards inhibitor design.

摘要

通过X射线晶体学对铜绿假单胞菌中磷酸甘露糖变位酶/磷酸葡萄糖变位酶(PMM/PGM)与一种缓慢底物和一种抑制剂形成的两种复合物进行了表征。两种配体均诱导该酶发生结构域间重排,从而形成一个高度隐蔽的活性位点。与酶-底物复合物的比较表明,抑制剂磷酸木糖1-磷酸利用了许多先前观察到的酶-配体相互作用。相比之下,对磷酸核糖1-磷酸复合物的分析揭示了结合过程中新的和保守的酶-配体相互作用的组合。PMM/PGM在其活性位点容纳这两种戊糖磷酸糖的能力可能与未来抑制剂设计的研究工作相关。

相似文献

1
Complexes of the enzyme phosphomannomutase/phosphoglucomutase with a slow substrate and an inhibitor.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Aug 1;62(Pt 8):722-6. doi: 10.1107/S1744309106025887. Epub 2006 Jul 24.
2
Structural basis of diverse substrate recognition by the enzyme PMM/PGM from P. aeruginosa.
Structure. 2004 Jan;12(1):55-63. doi: 10.1016/j.str.2003.11.015.
3
Crystal structure of PMM/PGM: an enzyme in the biosynthetic pathway of P. aeruginosa virulence factors.
Structure. 2002 Feb;10(2):269-79. doi: 10.1016/s0969-2126(02)00705-0.
4
Crystallization and initial crystallographic analysis of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa.
Acta Crystallogr D Biol Crystallogr. 2000 Jun;56(Pt 6):761-2. doi: 10.1107/s0907444900004431.
5
The reaction of phosphohexomutase from Pseudomonas aeruginosa: structural insights into a simple processive enzyme.
J Biol Chem. 2006 Jun 2;281(22):15564-71. doi: 10.1074/jbc.M600590200. Epub 2006 Apr 4.
6
Inhibitory Evaluation of αPMM/PGM from : Chemical Synthesis, Enzyme Kinetics, and Protein Crystallographic Study.
J Org Chem. 2019 Aug 2;84(15):9627-9636. doi: 10.1021/acs.joc.9b01305. Epub 2019 Jul 16.
8
Promotion of enzyme flexibility by dephosphorylation and coupling to the catalytic mechanism of a phosphohexomutase.
J Biol Chem. 2014 Feb 21;289(8):4674-82. doi: 10.1074/jbc.M113.532226. Epub 2014 Jan 8.
9
Domain motion and interdomain hot spots in a multidomain enzyme.
Protein Sci. 2010 Sep;19(9):1662-72. doi: 10.1002/pro.446.
10
Identification of an essential active-site residue in the α-D-phosphohexomutase enzyme superfamily.
FEBS J. 2013 Jun;280(11):2622-32. doi: 10.1111/febs.12249. Epub 2013 Apr 8.

引用本文的文献

1
Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation.
FEMS Microbiol Rev. 2023 Nov 1;47(6). doi: 10.1093/femsre/fuad060.
4
Genetic validation of Aspergillus fumigatus phosphoglucomutase as a viable therapeutic target in invasive aspergillosis.
J Biol Chem. 2022 Jun;298(6):102003. doi: 10.1016/j.jbc.2022.102003. Epub 2022 Apr 30.
5
strain HRC54 expression profile in response to sugarcane apoplastic fluid.
3 Biotech. 2021 Jun;11(6):292. doi: 10.1007/s13205-021-02848-y. Epub 2021 May 24.
7
Promotion of enzyme flexibility by dephosphorylation and coupling to the catalytic mechanism of a phosphohexomutase.
J Biol Chem. 2014 Feb 21;289(8):4674-82. doi: 10.1074/jbc.M113.532226. Epub 2014 Jan 8.
9
A novel N-terminal domain may dictate the glucose response of Mondo proteins.
PLoS One. 2012;7(4):e34803. doi: 10.1371/journal.pone.0034803. Epub 2012 Apr 10.
10
Solution NMR of a 463-residue phosphohexomutase: domain 4 mobility, substates, and phosphoryl transfer defect.
Biochemistry. 2012 Jan 24;51(3):807-19. doi: 10.1021/bi201609n. Epub 2012 Jan 17.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
The reaction of phosphohexomutase from Pseudomonas aeruginosa: structural insights into a simple processive enzyme.
J Biol Chem. 2006 Jun 2;281(22):15564-71. doi: 10.1074/jbc.M600590200. Epub 2006 Apr 4.
3
Coot: model-building tools for molecular graphics.
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32. doi: 10.1107/S0907444904019158. Epub 2004 Nov 26.
4
Evolutionary trace analysis of the alpha-D-phosphohexomutase superfamily.
Protein Sci. 2004 Aug;13(8):2130-8. doi: 10.1110/ps.04801104. Epub 2004 Jul 6.
5
Structural basis of diverse substrate recognition by the enzyme PMM/PGM from P. aeruginosa.
Structure. 2004 Jan;12(1):55-63. doi: 10.1016/j.str.2003.11.015.
6
Crystal structure of PMM/PGM: an enzyme in the biosynthetic pathway of P. aeruginosa virulence factors.
Structure. 2002 Feb;10(2):269-79. doi: 10.1016/s0969-2126(02)00705-0.
8
Crystallization and initial crystallographic analysis of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa.
Acta Crystallogr D Biol Crystallogr. 2000 Jun;56(Pt 6):761-2. doi: 10.1107/s0907444900004431.
9
The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis.
FEMS Microbiol Lett. 1999 Oct 1;179(1):85-90. doi: 10.1111/j.1574-6968.1999.tb08712.x.
10
Genetics of O-antigen biosynthesis in Pseudomonas aeruginosa.
Microbiol Mol Biol Rev. 1999 Sep;63(3):523-53. doi: 10.1128/MMBR.63.3.523-553.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验