Suppr超能文献

铜绿假单胞菌磷酸己糖变位酶4结构域的化学位移归属表明,游离作用扰乱了其共同进化的结构域界面。

Chemical shift assignments of domain 4 from the phosphohexomutase from Pseudomonas aeruginosa suggest that freeing perturbs its coevolved domain interface.

作者信息

Wei Yirui, Marcink Thomas C, Xu Jia, Sirianni Arthur G, Sarma Akella V S, Prior Stephen H, Beamer Lesa J, Van Doren Steven R

机构信息

Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA.

出版信息

Biomol NMR Assign. 2014 Oct;8(2):329-33. doi: 10.1007/s12104-013-9511-5. Epub 2013 Jul 28.

Abstract

A domain needed for the catalytic efficiency of an enzyme model of simple processivity and domain-domain interactions has been characterized by NMR. This domain 4 from phosphomannomutase/phosphoglucomutase (PMM/PGM) closes upon glucose phosphate and mannose phosphate ligands in the active site, and can modestly reconstitute activity of enzyme truncated to domains 1-3. This enzyme supports biosynthesis of the saccharide-derived virulence factors (rhamnolipids, lipopolysaccharides, and alginate) of the opportunistic bacterial pathogen Pseudomonas aeruginosa. (1)H, (13)C, and (15)N NMR chemical shift assignments of domain 4 of PMM/PGM suggest preservation and independence of its structure when separated from domains 1-3. The face of domain 4 that packs with domain 3 is perturbed in NMR spectra without disrupting this fold. The perturbed residues overlap both the most highly coevolved positions in the interface and residues lining a cavity at the domain interface.

摘要

一个对于具有简单持续性和结构域-结构域相互作用的酶模型的催化效率而言必不可少的结构域已通过核磁共振(NMR)进行了表征。磷酸甘露糖变位酶/磷酸葡萄糖变位酶(PMM/PGM)的这个结构域4在活性位点与磷酸葡萄糖和磷酸甘露糖配体结合时会闭合,并且能适度地重建截短为结构域1 - 3的酶的活性。这种酶支持机会性细菌病原体铜绿假单胞菌的糖类衍生毒力因子(鼠李糖脂、脂多糖和藻酸盐)的生物合成。PMM/PGM结构域4的氢-1(¹H)、碳-13(¹³C)和氮-15(¹⁵N)核磁共振化学位移归属表明,当它与结构域1 - 3分离时,其结构得以保留且具有独立性。在核磁共振谱中,结构域4与结构域3堆积的那一面受到了扰动,但并未破坏这种折叠结构。受扰动的残基既重叠于界面处协同进化程度最高的位置,也重叠于结构域界面处一个腔的内壁残基。

相似文献

2
The reaction of phosphohexomutase from Pseudomonas aeruginosa: structural insights into a simple processive enzyme.
J Biol Chem. 2006 Jun 2;281(22):15564-71. doi: 10.1074/jbc.M600590200. Epub 2006 Apr 4.
3
Promotion of enzyme flexibility by dephosphorylation and coupling to the catalytic mechanism of a phosphohexomutase.
J Biol Chem. 2014 Feb 21;289(8):4674-82. doi: 10.1074/jbc.M113.532226. Epub 2014 Jan 8.
5
Crystal structure of PMM/PGM: an enzyme in the biosynthetic pathway of P. aeruginosa virulence factors.
Structure. 2002 Feb;10(2):269-79. doi: 10.1016/s0969-2126(02)00705-0.
6
Complexes of the enzyme phosphomannomutase/phosphoglucomutase with a slow substrate and an inhibitor.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Aug 1;62(Pt 8):722-6. doi: 10.1107/S1744309106025887. Epub 2006 Jul 24.
8
Crystallization and initial crystallographic analysis of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa.
Acta Crystallogr D Biol Crystallogr. 2000 Jun;56(Pt 6):761-2. doi: 10.1107/s0907444900004431.
9
Structural basis of diverse substrate recognition by the enzyme PMM/PGM from P. aeruginosa.
Structure. 2004 Jan;12(1):55-63. doi: 10.1016/j.str.2003.11.015.
10
Backbone flexibility, conformational change, and catalysis in a phosphohexomutase from Pseudomonas aeruginosa.
Biochemistry. 2008 Sep 2;47(35):9154-62. doi: 10.1021/bi8005219. Epub 2008 Aug 9.

引用本文的文献

1
Biology, Mechanism, and Structure of Enzymes in the α-d-Phosphohexomutase Superfamily.
Adv Protein Chem Struct Biol. 2017;109:265-304. doi: 10.1016/bs.apcsb.2017.04.005. Epub 2017 May 17.
2
Induced Structural Disorder as a Molecular Mechanism for Enzyme Dysfunction in Phosphoglucomutase 1 Deficiency.
J Mol Biol. 2016 Apr 24;428(8):1493-505. doi: 10.1016/j.jmb.2016.02.032. Epub 2016 Mar 10.
3
Mutations in hereditary phosphoglucomutase 1 deficiency map to key regions of enzyme structure and function.
J Inherit Metab Dis. 2015 Mar;38(2):243-56. doi: 10.1007/s10545-014-9757-9. Epub 2014 Aug 29.
4
Promotion of enzyme flexibility by dephosphorylation and coupling to the catalytic mechanism of a phosphohexomutase.
J Biol Chem. 2014 Feb 21;289(8):4674-82. doi: 10.1074/jbc.M113.532226. Epub 2014 Jan 8.

本文引用的文献

1
Conservation of functionally important global motions in an enzyme superfamily across varying quaternary structures.
J Mol Biol. 2012 Nov 9;423(5):831-46. doi: 10.1016/j.jmb.2012.08.013. Epub 2012 Aug 27.
4
Solution NMR of a 463-residue phosphohexomutase: domain 4 mobility, substates, and phosphoryl transfer defect.
Biochemistry. 2012 Jan 24;51(3):807-19. doi: 10.1021/bi201609n. Epub 2012 Jan 17.
5
Domain motion and interdomain hot spots in a multidomain enzyme.
Protein Sci. 2010 Sep;19(9):1662-72. doi: 10.1002/pro.446.
7
SAGA: rapid automatic mainchain NMR assignment for large proteins.
J Biomol NMR. 2010 Apr;46(4):281-98. doi: 10.1007/s10858-010-9403-2. Epub 2010 Mar 16.
8
Backbone flexibility, conformational change, and catalysis in a phosphohexomutase from Pseudomonas aeruginosa.
Biochemistry. 2008 Sep 2;47(35):9154-62. doi: 10.1021/bi8005219. Epub 2008 Aug 9.
9
CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W496-502. doi: 10.1093/nar/gkn305. Epub 2008 May 30.
10
A set of BEST triple-resonance experiments for time-optimized protein resonance assignment.
J Magn Reson. 2007 Jul;187(1):163-9. doi: 10.1016/j.jmr.2007.04.002. Epub 2007 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验