Suppr超能文献

语前聋儿童精细和粗大运动技能的差异:对人工耳蜗植入的影响。

Divergence of fine and gross motor skills in prelingually deaf children: implications for cochlear implantation.

作者信息

Horn David L, Pisoni David B, Miyamoto Richard T

机构信息

DeVault Otologic Research Laboratory, Department of Otolaryngology/Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

出版信息

Laryngoscope. 2006 Aug;116(8):1500-6. doi: 10.1097/01.mlg.0000230404.84242.4c.

Abstract

OBJECTIVE

The objective of this study was to assess relations between fine and gross motor development and spoken language processing skills in pediatric cochlear implant users.

STUDY DESIGN

The authors conducted a retrospective analysis of longitudinal data.

METHODS

Prelingually deaf children who received a cochlear implant before age 5 and had no known developmental delay or cognitive impairment were included in the study. Fine and gross motor development were assessed before implantation using the Vineland Adaptive Behavioral Scales, a standardized parental report of adaptive behavior. Fine and gross motor scores reflected a given child's motor functioning with respect to a normative sample of typically developing, normal-hearing children. Relations between these preimplant scores and postimplant spoken language outcomes were assessed.

RESULTS

In general, gross motor scores were found to be positively related to chronologic age, whereas the opposite trend was observed for fine motor scores. Fine motor scores were more strongly correlated with postimplant expressive and receptive language scores than gross motor scores.

CONCLUSIONS

Our findings suggest a disassociation between fine and gross motor development in prelingually deaf children: fine motor skills, in contrast to gross motor skills, tend to be delayed as the prelingually deaf children get older. These findings provide new knowledge about the links between motor and spoken language development and suggest that auditory deprivation may lead to atypical development of certain motor and language skills that share common cortical processing resources.

摘要

目的

本研究的目的是评估小儿人工耳蜗使用者精细和粗大运动发育与口语加工技能之间的关系。

研究设计

作者对纵向数据进行了回顾性分析。

方法

本研究纳入了5岁前接受人工耳蜗植入且无已知发育延迟或认知障碍的语前聋儿童。在植入前使用文兰适应行为量表评估精细和粗大运动发育,这是一种标准化的家长报告的适应行为。精细和粗大运动得分反映了特定儿童相对于典型发育、听力正常儿童的规范样本的运动功能。评估了这些植入前得分与植入后口语结果之间的关系。

结果

总体而言,发现粗大运动得分与实际年龄呈正相关,而精细运动得分则呈现相反趋势。与粗大运动得分相比,精细运动得分与植入后表达性和接受性语言得分的相关性更强。

结论

我们的研究结果表明,语前聋儿童的精细和粗大运动发育之间存在脱节:与粗大运动技能相比,随着语前聋儿童年龄的增长,精细运动技能往往会延迟。这些发现提供了关于运动和口语发展之间联系的新知识,并表明听觉剥夺可能导致某些共享共同皮质加工资源的运动和语言技能的非典型发展。

相似文献

1
Divergence of fine and gross motor skills in prelingually deaf children: implications for cochlear implantation.
Laryngoscope. 2006 Aug;116(8):1500-6. doi: 10.1097/01.mlg.0000230404.84242.4c.
2
3
Behavioral assessment of prelingually deaf children before cochlear implantation.
Laryngoscope. 2005 Sep;115(9):1603-11. doi: 10.1097/01.mlg.0000171018.97692.c0.
4
Predictors of spoken language development following pediatric cochlear implantation.
Ear Hear. 2012 Sep-Oct;33(5):617-39. doi: 10.1097/AUD.0b013e3182503e47.
5
Effects of early auditory experience on the spoken language of deaf children at 3 years of age.
Ear Hear. 2006 Jun;27(3):286-98. doi: 10.1097/01.aud.0000215973.76912.c6.
7
Language development in children implanted with the CLARION cochlear implant.
Ann Otol Rhinol Laryngol Suppl. 1999 Apr;177:113-8. doi: 10.1177/00034894991080s423.
8
Development of spoken language grammar following cochlear implantation in prelingually deaf children.
Arch Otolaryngol Head Neck Surg. 2004 May;130(5):629-33. doi: 10.1001/archotol.130.5.629.
10
Behavioral inhibition and clinical outcomes in children with cochlear implants.
Laryngoscope. 2005 Apr;115(4):595-600. doi: 10.1097/01.mlg.0000161340.00258.1d.

引用本文的文献

1
The relationships between language, functional hearing, social, and motor development skills in children with early cochlear implants.
Eur Arch Otorhinolaryngol. 2024 Sep;281(9):4593-4602. doi: 10.1007/s00405-024-08635-8. Epub 2024 Apr 17.
2
Hearing and Cognition in Childhood.
Laryngorhinootologie. 2023 May;102(S 01):S3-S11. doi: 10.1055/a-1973-5087. Epub 2023 May 2.
3
Visual statistical learning in deaf and hearing infants and toddlers.
Infancy. 2022 Jul;27(4):720-735. doi: 10.1111/infa.12474. Epub 2022 May 7.
4
Association of Hearing Impairment With Neurocognition in Survivors of Childhood Cancer.
JAMA Oncol. 2020 Sep 1;6(9):1363-1371. doi: 10.1001/jamaoncol.2020.2822.
5
The Impact of Early Deafness on Brain Plasticity: A Systematic Review of the White and Gray Matter Changes.
Front Neurosci. 2020 Mar 30;14:206. doi: 10.3389/fnins.2020.00206. eCollection 2020.
6
Temporary conductive hearing loss in early life impairs spatial memory of rats in adulthood.
Brain Behav. 2018 Jul;8(7):e01004. doi: 10.1002/brb3.1004. Epub 2018 May 31.
7
Mandarin compound vowels produced by prelingually deafened children with cochlear implants.
Int J Pediatr Otorhinolaryngol. 2017 Jun;97:143-149. doi: 10.1016/j.ijporl.2017.04.012. Epub 2017 Apr 10.
8
Dance Movements Enhance Song Learning in Deaf Children with Cochlear Implants.
Front Psychol. 2016 Jun 15;7:835. doi: 10.3389/fpsyg.2016.00835. eCollection 2016.
9
Effect of Sensorineural Hearing Loss on Neurocognitive Functioning in Pediatric Brain Tumor Survivors.
Pediatr Blood Cancer. 2016 Mar;63(3):527-34. doi: 10.1002/pbc.25804. Epub 2015 Nov 3.
10
Factors Affecting Psychosocial and Motor Development in 3-Year-Old Children Who Are Deaf or Hard of Hearing.
J Deaf Stud Deaf Educ. 2015 Oct;20(4):331-42. doi: 10.1093/deafed/env028. Epub 2015 Jul 23.

本文引用的文献

1
Behavioral assessment of prelingually deaf children before cochlear implantation.
Laryngoscope. 2005 Sep;115(9):1603-11. doi: 10.1097/01.mlg.0000171018.97692.c0.
2
Non-verbal development of children with deafness with and without cochlear implants.
Dev Med Child Neurol. 2004 Sep;46(9):599-606. doi: 10.1017/s001216220400101x.
3
Infant vocal-motor coordination: precursor to the gesture-speech system?
Child Dev. 2004 Jul-Aug;75(4):1053-66. doi: 10.1111/j.1467-8624.2004.00725.x.
4
Listening to speech activates motor areas involved in speech production.
Nat Neurosci. 2004 Jul;7(7):701-2. doi: 10.1038/nn1263. Epub 2004 Jun 6.
5
Activations of "motor" and other non-language structures during sentence comprehension.
Brain Lang. 2004 May;89(2):290-9. doi: 10.1016/S0093-934X(03)00359-6.
6
Language perception activates the hand motor cortex: implications for motor theories of speech perception.
Eur J Neurosci. 2003 Aug;18(3):704-8. doi: 10.1046/j.1460-9568.2003.02774.x.
7
Neuropsychological testing in the screening for cochlear implant candidacy.
Laryngoscope. 2003 Apr;113(4):763-6. doi: 10.1097/00005537-200304000-00035.
8
Six views of embodied cognition.
Psychon Bull Rev. 2002 Dec;9(4):625-36. doi: 10.3758/bf03196322.
9
Movement sequencing and phonological fluency in (putatively) nonimpaired readers.
Psychol Sci. 2002 Jul;13(4):375-9. doi: 10.1111/1467-9280.00467.
10
Speech listening specifically modulates the excitability of tongue muscles: a TMS study.
Eur J Neurosci. 2002 Jan;15(2):399-402. doi: 10.1046/j.0953-816x.2001.01874.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验