Suppr超能文献

Superoxide-dependent and superoxide-independent pathways for reduction of nitroblue tetrazolium in isolated rat cardiac myocytes.

作者信息

Thayer W S

机构信息

Department of Pathology, School of Medicine, Hahnemann University, Philadelphia, Pennsylvania 19102.

出版信息

Arch Biochem Biophys. 1990 Jan;276(1):139-45. doi: 10.1016/0003-9861(90)90020-y.

Abstract

Spectroscopic studies indicated that nitroblue tetrazolium (NBT) could be reduced to blue formazan by several distinct reactions in suspensions of isolated rat cardiac myocytes. Both NADPH- and NADH-linked pathways for reduction of NBT were observed. NADPH-linked NBT reduction showed little activity in the absence of digitonin, but could be stimulated an average of 9.5-fold by digitonin permeabilization of the plasma membrane. NADH-linked NBT reduction occurred in the absence of digitonin, and could be increased an average of 3.5-fold by digitonin treatment. Analysis of the effects of cell viability on the extent of digitonin stimulation with these substrates suggested that the NADPH-linked reaction involved a cytosolic component, while the NADH-linked reaction involved an intracellular membrane enzyme system. With either NADPH or NADH, NBT reduction was completely inhibited by dicoumarol (100 microM). Dicoumarol-insensitive NBT reduction could subsequently be observed following the addition of 2 mM cyanide, a level of cyanide known to inhibit cytosolic superoxide dismutase. Cyanide-stimulated, dicoumarol-insensitive NBT reduction was augmented by the presence of either antimycin or doxorubicin, two agents which enhance superoxide formation by different mechanisms. The results indicate the existence of multiple pathways for both superoxide-independent and superoxide-dependent reduction of NBT. Dicoumarol-insensitive, cyanide-stimulated NBT reduction may be useful as a spectroscopic probe for intracellular superoxide formation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验