Jennewein Stefan, Schürmann Martin, Wolberg Michael, Hilker Iris, Luiten Ruud, Wubbolts Marcel, Mink Daniel
DSM Anti-Infectives, Delft, The Netherlands.
Biotechnol J. 2006 May;1(5):537-48. doi: 10.1002/biot.200600020.
Aldolases are emerging as powerful and cost efficient tools for the industrial synthesis of chiral molecules. They catalyze enantioselective carbon-carbon bond formations, generating up to two chiral centers under mild reaction conditions. Despite their versatility, narrow substrate ranges and enzyme inactivation under synthesis conditions represented major obstacles for large-scale applications of aldolases. In this study we applied directed evolution to optimize Escherichia coli 2-deoxy-D-ribose 5-phosphate aldolase (DERA) as biocatalyst for the industrial synthesis of (3R,5S)-6-chloro-2,4,6-trideoxyhexapyranoside. This versatile chiral precursor for vastatin drugs like Lipitor (atorvastatin) is synthesized by DERA in a tandem-aldol reaction from chloroacetaldehyde and two acetaldehyde equivalents. However, E. coli DERA shows low affinity to chloroacetaldehyde and is rapidly inactivated at aldehyde concentrations useful for biocatalysis. Using high-throughput screenings for chloroacetaldehyde resistance and for higher productivity, several improved variants have been identified. By combination of the most beneficial mutations we obtained a tenfold improved variant compared to wild-type DERA with regard to (3R,5S)-6-chloro-2,4,6-trideoxyhexapyranoside synthesis, under industrially relevant conditions.
醛缩酶正逐渐成为用于手性分子工业合成的强大且具有成本效益的工具。它们催化对映选择性碳 - 碳键形成,在温和的反应条件下可生成多达两个手性中心。尽管醛缩酶具有多功能性,但底物范围狭窄以及在合成条件下酶失活是醛缩酶大规模应用的主要障碍。在本研究中,我们应用定向进化来优化大肠杆菌2 - 脱氧 - D - 核糖5 - 磷酸醛缩酶(DERA),使其作为生物催化剂用于工业合成(3R,5S)-6 - 氯 - 2,4,6 - 三脱氧己吡喃糖苷。这种用于如立普妥(阿托伐他汀)等他汀类药物的通用手性前体,由DERA通过氯乙醛与两个乙醛当量的串联醛醇缩合反应合成。然而,大肠杆菌DERA对氯乙醛的亲和力较低,并且在对生物催化有用的醛浓度下会迅速失活。通过对氯乙醛抗性和更高生产力的高通量筛选,已鉴定出几种改进的变体。在工业相关条件下,通过组合最有益的突变,我们获得了一个与野生型DERA相比,在(3R,5S)-6 - 氯 - 2,4,6 - 三脱氧己吡喃糖苷合成方面提高了十倍的变体。