Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713, AV Groningen, The Netherlands.
Angew Chem Int Ed Engl. 2022 Jul 25;61(30):e202203613. doi: 10.1002/anie.202203613. Epub 2022 Jun 15.
The application of biocatalysis in conquering challenging synthesis requires the constant input of new enzymes. Developing novel biocatalysts by absorbing catalysis modes from synthetic chemistry has yielded fruitful new-to-nature enzymes. Organocatalysis was originally bio-inspired and has become the third pillar of asymmetric catalysis. Transferring organocatalytic reactions back to enzyme platforms is a promising approach for biocatalyst creation. Herein, we summarize recent developments in the design of novel biocatalysts that adopt iminium catalysis, a fundamental branch in organocatalysis. By repurposing existing enzymes or constructing artificial enzymes, various biocatalysts for iminium catalysis have been created and optimized via protein engineering to promote valuable abiological transformations. Recent advances in iminium biocatalysis illustrate the power of combining chemomimetic biocatalyst design and directed evolution to generate useful new-to-nature enzymes.
生物催化在攻克具有挑战性的合成方面的应用需要不断引入新的酶。通过从合成化学中吸收催化模式来开发新型生物催化剂,已经产生了许多新的天然酶。有机催化最初是受到生物启发的,现已成为不对称催化的第三大支柱。将有机催化反应转移回酶平台是创建生物催化剂的一种很有前途的方法。本文总结了采用亚胺催化的新型生物催化剂的最新设计进展,亚胺催化是有机催化中的一个基本分支。通过重新利用现有酶或构建人工酶,通过蛋白质工程对各种用于亚胺催化的生物催化剂进行了改造和优化,以促进有价值的非生物转化。亚胺生物催化的最新进展说明了结合化学模拟生物催化剂设计和定向进化来产生有用的新天然酶的强大功能。