Suppr超能文献

通过定向进化在典型的 I 类醛缩酶中实现不对称迈克尔加成反应

Unlocking Asymmetric Michael Additions in an Archetypical Class I Aldolase by Directed Evolution.

作者信息

Kunzendorf Andreas, Xu Guangcai, van der Velde Jesse J H, Rozeboom Henriëtte J, Thunnissen Andy-Mark W H, Poelarends Gerrit J

机构信息

Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.

Molecular Enzymology Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

出版信息

ACS Catal. 2021 Nov 5;11(21):13236-13243. doi: 10.1021/acscatal.1c03911. Epub 2021 Oct 15.

Abstract

Class I aldolases catalyze asymmetric aldol addition reactions and have found extensive application in the biocatalytic synthesis of chiral β-hydroxy-carbonyl compounds. However, the usefulness of these powerful enzymes for application in other C-C bond-forming reactions remains thus far unexplored. The redesign of class I aldolases to expand their catalytic repertoire to include non-native carboligation reactions therefore continues to be a major challenge. Here, we report the successful redesign of 2-deoxy-d-ribose-5-phosphate aldolase (DERA) from , an archetypical class I aldolase, to proficiently catalyze enantioselective Michael additions of nitromethane to α,β-unsaturated aldehydes to yield various pharmaceutically relevant chiral synthons. After 11 rounds of directed evolution, the redesigned DERA enzyme (DERA-MA) carried 12 amino-acid substitutions and had an impressive 190-fold enhancement in catalytic activity compared to the wildtype enzyme. The high catalytic efficiency of DERA-MA for this abiological reaction makes it a proficient "Michaelase" with potential for biocatalytic application. Crystallographic analysis provides a structural context for the evolved activity. Whereas an aldolase acts naturally by activating the enzyme-bound substrate as a nucleophile (enamine-based mechanism), DERA-MA instead acts by activating the enzyme-bound substrate as an electrophile (iminium-based mechanism). This work demonstrates the power of directed evolution to expand the reaction scope of natural aldolases to include asymmetric Michael addition reactions and presents opportunities to explore iminium catalysis with DERA-derived catalysts inspired by developments in the organocatalysis field.

摘要

I类醛缩酶催化不对称醛醇加成反应,已在生物催化合成手性β-羟基羰基化合物中得到广泛应用。然而,这些强大的酶在其他碳-碳键形成反应中的应用价值至今仍未得到探索。因此,对I类醛缩酶进行重新设计以扩大其催化范围,使其包括非天然的碳连接反应,仍然是一个重大挑战。在此,我们报告了对来自[具体来源未给出]的2-脱氧-D-核糖-5-磷酸醛缩酶(DERA,一种典型的I类醛缩酶)进行成功重新设计,使其能够高效催化硝基甲烷对α,β-不饱和醛的对映选择性迈克尔加成反应,生成各种与药物相关的手性合成子。经过11轮定向进化后,重新设计的DERA酶(DERA-MA)有12个氨基酸替换,与野生型酶相比,催化活性提高了令人印象深刻的190倍。DERA-MA对这种非生物反应的高催化效率使其成为一种高效的“迈克尔酶”,具有生物催化应用潜力。晶体学分析为进化后的活性提供了结构背景。醛缩酶自然作用时是通过将酶结合的底物激活为亲核试剂(基于烯胺的机制),而DERA-MA则相反,是通过将酶结合的底物激活为亲电试剂(基于亚胺离子的机制)。这项工作展示了定向进化在扩大天然醛缩酶反应范围以包括不对称迈克尔加成反应方面的强大作用,并为受有机催化领域发展启发,利用DERA衍生催化剂探索亚胺离子催化提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dac6/8576802/3d8f05bc0b35/cs1c03911_0004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验