Shriner Daniel, Liu Yi, Nickle David C, Mullins James I
Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195-8070, USA.
Evolution. 2006 Jun;60(6):1165-76.
HIV-1 is one of the fastest evolving entities known. Given that census population sizes of HIV-1 within individuals are much greater than the inverse mutation rate, every possible single point mutation in the viral genome occurs each generation. This enormous capability to generate genetic variation allows for escape from immune surveillance and antiviral therapy. However, compared to this potential, populations of HIV-1 within individuals exhibit little genetic variation. This discrepancy between the known mutation rate of HIV-1 and the average level of genetic variation in the env gene observed in vivo is reflected in comparisons of the actual numbers of productively infected cells, estimated as 10(7), and the effective population size, estimated as 10(3). Using approximate Bayesian computation, we evaluated several hypotheses based on a variety of selective and demographic processes to explain the low effective population size of HIV-1. Of the models we examined, the metapopulation model, in which HIV-1 evolves within an individual as a large collection of small subpopulations subject to frequent migration, extinction, and recolonization, was most consistent with the observed levels of genetic variation and the average frequencies of those variants. The metapopulation model links previous studies of viral dynamics and population genetics.
人类免疫缺陷病毒1型(HIV-1)是已知进化速度最快的病原体之一。鉴于个体体内HIV-1的普查群体规模远大于反向突变率,病毒基因组中的每一个可能的单点突变在每一代都会出现。这种产生遗传变异的巨大能力使得病毒能够逃避免疫监视和抗病毒治疗。然而,与这种潜力相比,个体体内的HIV-1群体表现出的遗传变异很少。HIV-1已知的突变率与体内观察到的env基因遗传变异平均水平之间的这种差异,反映在对有效感染细胞实际数量(估计为10^7)和有效群体规模(估计为10^3)的比较中。我们使用近似贝叶斯计算,基于各种选择和人口统计学过程评估了几个假说来解释HIV-1的低有效群体规模。在我们研究的模型中,集合种群模型(在该模型中,HIV-1在个体体内作为大量受频繁迁移、灭绝和重新定殖影响的小亚群的大集合而进化)与观察到的遗传变异水平以及这些变异的平均频率最为一致。集合种群模型将先前关于病毒动力学和群体遗传学的研究联系了起来。