Möglich Andreas, Joder Karin, Kiefhaber Thomas
Division of Biophysical Chemistry, Biozentrum der Universität Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12394-9. doi: 10.1073/pnas.0604748103. Epub 2006 Aug 7.
Characterization of the unfolded state is essential for the understanding of the protein folding reaction. We performed time-resolved FRET measurements to gain information on the dimensions and the internal dynamics of unfolded polypeptide chains. Using an approach based on global analysis of data obtained from two different donor-acceptor pairs allowed for the determination of distance distribution functions and diffusion constants between the chromophores. Results on a polypeptide chain consisting of 16 Gly-Ser repeats between the FRET chromophores reveal an increase in the average end-to-end distance from 18.9 to 39.2 Angstrom between 0 and 8 M GdmCl. The increase in chain dimensions is accompanied by an increase in the end-to-end diffusion constant from (3.6 +/- 1.0) x 10(-7) cm(2) s(-1) in water to (14.8 +/- 2.5) x 10(-7) cm(2) s(-1) in 8 M GdmCl. This finding suggests that intrachain interactions in water exist even in very flexible chains lacking hydrophobic groups, which indicates intramolecular hydrogen bond formation. The interactions are broken upon denaturant binding, which leads to increased chain flexibility and longer average end-to-end distances. This finding implies that rapid collapse of polypeptide chains during refolding of denaturant-unfolded proteins is an intrinsic property of polypeptide chains and can, at least in part, be ascribed to nonspecific intramolecular hydrogen bonding. Despite decreased intrachain diffusion constants, the conformational search is accelerated in the collapsed state because of shorter diffusion distances. The measured distance distribution functions and diffusion constants in combination with Szabo-Schulten-Schulten theory were able to reproduce experimentally determined rate constants for end-to-end loop formation.
对未折叠状态的表征对于理解蛋白质折叠反应至关重要。我们进行了时间分辨荧光共振能量转移(FRET)测量,以获取有关未折叠多肽链尺寸和内部动力学的信息。使用基于对从两个不同供体-受体对获得的数据进行全局分析的方法,可以确定发色团之间的距离分布函数和扩散常数。对在FRET发色团之间由16个Gly-Ser重复序列组成的多肽链的研究结果表明,在0至8 M盐酸胍(GdmCl)之间,平均端到端距离从18.9埃增加到39.2埃。链尺寸的增加伴随着端到端扩散常数从水中的(3.6±1.0)×10⁻⁷ cm² s⁻¹增加到8 M GdmCl中的(14.8±2.5)×10⁻⁷ cm² s⁻¹。这一发现表明,即使在缺乏疏水基团的非常灵活的链中,水中也存在链内相互作用,这表明形成了分子内氢键。变性剂结合后,这些相互作用被破坏,导致链的柔韧性增加和平均端到端距离变长。这一发现意味着,在变性剂展开的蛋白质重折叠过程中多肽链的快速折叠是多肽链的固有特性,并且至少部分可以归因于非特异性分子内氢键。尽管链内扩散常数降低,但由于扩散距离较短,在折叠状态下构象搜索仍会加速。所测量的距离分布函数和扩散常数与萨博-舒尔滕-舒尔滕理论相结合,能够重现实验确定的端到端环形成的速率常数。