Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Germany.
PLoS Comput Biol. 2010 Jan 22;6(1):e1000645. doi: 10.1371/journal.pcbi.1000645.
Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20-100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient beta-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events.
对无规多肽链中从头至尾环闭动力学的长度依赖性进行分析,为我们理解蛋白质折叠的早期步骤提供了帮助。在这里,我们将单分子荧光光谱学与分子动力学模拟相结合,研究了聚甘氨酸-丝氨酸肽中的环闭情况。对于包含 10 个以上肽键的链,在 20-100 纳秒的时间范围内,环闭速率常数呈现出幂律长度依赖性。然而,对于较短的肽,这种标度关系会失效,这是由于实验设置中使用的染料报告系统引起的扰动导致的较慢动力学。发现较长肽中的环闭动力学由肽内氢键和瞬态β-折叠结构决定,这加速了在序列上与不能形成氢键的多肽链相比,对距离较远的残基之间的接触的搜索。这里发现的生理条件下无规多肽链中由氢键驱动的链折叠不仅与蛋白质折叠的层次模型一致,该模型强调了二级结构形成在折叠过程早期的重要性,而且还被证明可以加快寻找有成效的折叠事件。