Suppr超能文献

αα-枢纽共调节剂的结构和灵活性决定了调控相互作用组中转录因子的结合和选择。

αα-hub coregulator structure and flexibility determine transcription factor binding and selection in regulatory interactomes.

机构信息

REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

REPIN and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.

出版信息

J Biol Chem. 2022 Jun;298(6):101963. doi: 10.1016/j.jbc.2022.101963. Epub 2022 Apr 20.

Abstract

Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.

摘要

转录因子(TF)-共调节因子复合物的形成是转录调控的关键步骤,共调节因子作为分子网络中的枢纽节点具有重要功能。这些节点中如何保持特异性和选择性仍然是悬而未决的问题。在这项工作中,我们使用 TF 和 αα-枢纽之间形成的复合物作为模型,解决了转录网络中的特异性问题,αα-枢纽是由共同的 αα-发夹二级结构模体定义的。我们使用 NMR 光谱和结合热力学分析了来自 TAF4 的拟南芥 RST 结构域和已知结合伴侣 RCD1 的结构、动态、稳定性和配体结合特性,以及来自人 TAF4 的 TAFH 结构域,允许在物种、功能和结构背景下进行比较。虽然这些 αα-枢纽共享 αα-发夹模体,但它们在附加螺旋的长度和方向以及配体结合的热力学特征上存在差异。虽然具有生物学意义的 RCD1-配体对显示出由焓驱动的高亲和力,但 TAF4-配体相互作用是熵驱动的,并且表现出较少的结合诱导结构。我们还确定了所有三个结构域的热解折叠状态,尽管核心温度敏感性不同。热稳定性研究表明,RCD1-RST 结构域的初始解折叠集中在螺旋 1 周围,使该区域具有结构柔韧性,而 TAF4-RST 的影响更为随机,表明在结合时结构适应性的可变性。总的来说,我们的结果支持这样一种模型,即枢纽结构、灵活性和结合热力学有助于 αα-枢纽-TF 结合特异性,这一发现对于理解共调节因子-配体相互作用和相互作用组大小具有普遍意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9df/9127584/d0eb8e8f5ea2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验