Richter Yael, Fischer Bilha
Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan, 52900, Israel.
J Biol Inorg Chem. 2006 Nov;11(8):1063-74. doi: 10.1007/s00775-006-0143-4. Epub 2006 Aug 1.
Highly reactive OH radicals, formed in an iron-ion catalyzed Fenton reaction, are implicated in many pathological conditions. The quest for Fenton reaction inhibitors, either radical scavenger or metal-ion chelator antioxidants, spans the previous decades. Purine nucleotides were previously studied as natural modulators of the Fenton reaction; however, the modulatory role of purine nucleotides remained in dispute. Here, we have resolved this long-standing dispute and demonstrated a concentration-dependent biphasic modulation of the Fenton reaction by nucleotides. By electron spin resonance measurements with 0.1 mM Fe(II), we observed an increase of *OH production at low purine nucleotide concentrations (up to 0.15 mM), while at higher nucleotide concentrations, an exponential decay of *OH concentration was observed. We found that the phosphate moiety, not the nucleoside, determines the pro/antioxidant properties of a nucleotide, suggesting a chelation-based modulation. Furthermore, the biphasic modulation mode is probably due to diverse nucleotide-Fe(II) complexes formed in a concentration-dependent manner. At ATP concentrations much greater than Fe(II) concentrations, multiligand chelates are formed which inhibit the Fenton reaction owing to a full Fe(II) coordination sphere. In addition to natural nucleotides, we investigated a series of base- or phosphate-modified nucleotides, dinucleotides, and inorganic phosphates, as potential biocompatible antioxidants. Ap5A, inorganic thiophosphate and ATP-gamma-S proved highly potent antioxidants with IC50 values of 40, 30, and 10 microM, respectively. ATP-gamma-S proved 100 and 20 times more active than ATP and the potent antioxidant Trolox, respectively. In the presence of 30 microM ATP-gamma-S no *OH was detected after 5 min in the Fenton reaction mixture. The most potent antioxidants identified inhibit the Fenton reaction by forming full coordination sphere chelates.
在铁离子催化的芬顿反应中形成的高活性羟基自由基与许多病理状况有关。在过去几十年里,人们一直在寻找芬顿反应抑制剂,包括自由基清除剂或金属离子螯合抗氧化剂。嘌呤核苷酸此前被研究作为芬顿反应的天然调节剂;然而,嘌呤核苷酸的调节作用仍存在争议。在此,我们解决了这一长期存在的争议,并证明了核苷酸对芬顿反应具有浓度依赖性的双相调节作用。通过使用0.1 mM Fe(II)进行电子自旋共振测量,我们观察到在低嘌呤核苷酸浓度(高达0.15 mM)时羟基自由基产量增加,而在较高核苷酸浓度时,羟基自由基浓度呈指数衰减。我们发现,决定核苷酸促氧化/抗氧化特性的是磷酸基团而非核苷,这表明其调节作用基于螯合作用。此外,这种双相调节模式可能是由于以浓度依赖方式形成的多种核苷酸-Fe(II)复合物所致。在ATP浓度远高于Fe(II)浓度时,会形成多配体螯合物,由于Fe(II)的配位球完整,从而抑制芬顿反应。除了天然核苷酸,我们还研究了一系列碱基或磷酸修饰的核苷酸、二核苷酸和无机磷酸盐,作为潜在的生物相容性抗氧化剂。Ap5A、无机硫代磷酸盐和ATP-γ-S被证明是高效抗氧化剂,IC50值分别为40、30和10 microM。ATP-γ-S的活性分别比ATP和强效抗氧化剂Trolox高100倍和20倍。在芬顿反应混合物中加入30 microM ATP-γ-S 5分钟后未检测到羟基自由基。所鉴定出的最有效的抗氧化剂通过形成完整配位球螯合物来抑制芬顿反应。