Department of Chemistry, Bar-Ilan University, 52900, Ramat-Gan, Israel.
J Biol Inorg Chem. 2010 May;15(4):601-20. doi: 10.1007/s00775-010-0628-z. Epub 2010 Feb 13.
We report on a rather unknown feature of oligonucleotides, namely, their potent antioxidant activity. Previously, we showed that nucleotides are potent antioxidants in Fe(II)/Cu(I/II)-H(2)O(2) systems. Here, we explored the potential of 2'-deoxyoligonucleotides as inhibitors of the Fe(II)/Cu(I/II)-induced *OH formation from H(2)O(2). The oligonucleotides [d(A)(5,7,20); d(T)(20); (2'-OMe-A)(5)] proved to be highly potent antioxidants with IC(50) values of 5-17 or 48-85 microM in inhibiting Fe(II)/Cu(I)- or Cu(II)-induced H(2)O(2) decomposition, respectively, thus representing a 40-215-fold increase in potency as compared with Trolox, a standard antioxidant. The antioxidant activity is only weakly dependent on the oligonucleotides' length or base identity. We analyzed by matrix-assisted laser desorption/ionization time of flight mass spectrometry and (1)H-NMR spectroscopy the composition of the d(A)(5) solution exposed to the aforementioned oxidative conditions for 4 min or 24 h. We concluded that the primary (rapid) inhibition mechanism by oligonucleotides is metal ion chelation and the secondary (slow) mechanism is radical scavenging. We characterized the Cu(I)-d(A)(5) and Cu(II)-d(A)(7) complexes by (1)H-NMR and (31)P-NMR or frozen-solution ESR spectroscopy, respectively. Cu(I) is probably coordinated to d(A)(5) via N1 and N7 of two adenine residues and possibly also via two phosphate/bridging water molecules. The ESR data suggest Cu(II) chelation through two nitrogen atoms of the adenine bases and two oxygen atoms (phosphates or water molecules). We conclude that oligonucleotides at micromolar concentrations prevent Fe(II)/Cu(I/II)-induced oxidative damage, primarily through metal ion chelation. Furthermore, we propose the use of a short, metabolically stable oligonucleotide, (2'-OMe-A)(5), as a highly potent and relatively long lived (t(1/2) approximately 20 h) antioxidant.
我们报告了寡核苷酸的一个相当未知的特性,即它们强大的抗氧化活性。此前,我们表明核苷酸是 Fe(II)/Cu(I/II)-H(2)O(2) 体系中的强抗氧化剂。在这里,我们探索了 2'-脱氧寡核苷酸作为抑制 Fe(II)/Cu(I/II)诱导的 H(2)O(2)产生 *OH 的潜在能力。寡核苷酸 [d(A)(5,7,20); d(T)(20); (2'-OMe-A)(5)] 被证明是非常有效的抗氧化剂,其抑制 Fe(II)/Cu(I)-或 Cu(II)-诱导的 H(2)O(2)分解的 IC(50) 值分别为 5-17 或 48-85 microM,与标准抗氧化剂 Trolox 相比,效力提高了 40-215 倍。抗氧化活性仅与寡核苷酸的长度或碱基身份有微弱的关系。我们通过基质辅助激光解吸/电离飞行时间质谱和 (1)H-NMR 光谱分析了在上述氧化条件下暴露 4 分钟或 24 小时的 d(A)(5)溶液的组成。我们得出的结论是,寡核苷酸的主要(快速)抑制机制是金属离子螯合,次要(缓慢)机制是自由基清除。我们通过 (1)H-NMR 和 (31)P-NMR 或冷冻溶液 ESR 光谱分别对 Cu(I)-d(A)(5)和 Cu(II)-d(A)(7)复合物进行了表征。Cu(I)可能通过两个腺嘌呤残基的 N1 和 N7 以及可能还有两个磷酸/桥接水分子与 d(A)(5)配位。ESR 数据表明,Cu(II)通过腺嘌呤碱基的两个氮原子和两个氧原子(磷酸或水分子)螯合。我们得出的结论是,在微摩尔浓度下,寡核苷酸可以通过金属离子螯合来防止 Fe(II)/Cu(I/II)诱导的氧化损伤。此外,我们提出使用短的、代谢稳定的寡核苷酸 (2'-OMe-A)(5)作为一种非常有效的和相对长寿命的(t(1/2)约 20 小时)抗氧化剂。