Suppr超能文献

Can nucleotides prevent Cu-induced oxidative damage?

作者信息

Baruch-Suchodolsky Rozena, Fischer Bilha

机构信息

Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel.

出版信息

J Inorg Biochem. 2008 Apr;102(4):862-81. doi: 10.1016/j.jinorgbio.2007.11.023. Epub 2007 Dec 23.

Abstract

Cu-induced oxidative damage is associated with cancer, diabetes, neurodegenerative and age related diseases. The quest for Cu-chelators as potential antioxidants spans the past decades. Yet, biocompatible Cu-chelators that do not alter the normal metal-ion homeostasis are still lacking. Here, we explored the potential of natural and synthetic nucleotides and inorganic phosphates as inhibitors of the Cu(I)/(II)-induced ()OH formation via either the Fenton or Haber-Weiss mechanisms. For this purpose, we studied by ESR the modulation of Cu-induced ()OH production, from the decomposition of H(2)O(2), by nucleotides and phosphates. ATP inhibited both Cu(I) and Cu(II) catalyzed reactions (IC(50) 0.11 and 0.04mM, respectively). Likewise, adenosine 5'-beta,gamma-methylene triphosphate (AMP-PCP), adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S), ADP and tripolyphosphate were identified as good inhibitors. However, AMP and adenosine were poor inhibitors in the Cu(I)-H(2)O(2) system, IC(50) ca. 1.2mM, and radical enhancers in the Cu(II)-H(2)O(2) system. The best antioxidant was adenosine 5'-[beta,gamma-imino] triphosphate (AMP-PNP) (IC(50) 0.05mM at Cu(I)-H(2)O(2) system) which was 15 times more active than the known antioxidant Trolox. ATP and analogues inhibit Cu-induced ()OH formation through an ion chelation rather than a scavenging mechanism. Two phosphate groups are required for making active Fenton-reaction inhibitors. Nucleotides and phosphates triggered a biphasic modulation of the Haber-Weiss reaction, but a monophasic inhibition of the Fenton reaction. We conclude that nucleotides at sub mM concentrations can prevent Cu-induced OH radical formation from H(2)O(2), and hence may possibly prevent oxidative damage.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验