Suppr超能文献

The host acts as a genetic bottleneck during serial infections: an insect-fungal model system.

作者信息

Scully Lisa R, Bidochka Michael J

机构信息

Department of Biological Sciences, Brock University, ONT, Canada.

出版信息

Curr Genet. 2006 Nov;50(5):335-45. doi: 10.1007/s00294-006-0089-7. Epub 2006 Aug 8.

Abstract

The genetic variation of a pathogen population is a pivotal component of pathogen evolution, having important implications for emerging diseases, nosocomial infections, and laboratory subculturing practices. Furthermore, it is undoubtedly altered during infection of a host. We address this issue using an insect-fungal model system to examine the influence of serial host passage on the genetic variation of a pathogen population. Using amplified fragment length polymorphism, a strain of the opportunistic fungus, Aspergillus flavus, showing initially 98% genetic similarity, was assessed for changes in genetic diversity during repeated passage through Galleria mellonella larvae and compared to that of a parallel population serially subcultured on artificial media. In two independent trials, the genetic diversity of the population passed through the insect dropped significantly, while the genetic variation of the population subcultured on media increased or remained unchanged. However, there were no changes in virulence or the production of protease or aflatoxin, indicating an apparent lack of selection. We suggest that the insect acted as a genetic bottleneck, reducing the genetic diversity of the A. flavus population. The ability of a host to produce a genetic bottleneck in a pathogen population impacts our understanding of emerging diseases, nosocomial infections, and laboratory subculturing practices.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验