Suppr超能文献

人类心力衰竭时动作电位尖峰形态变化、连接肌浆网微结构及横管结构改变的影响

Effect of changes in action potential spike configuration, junctional sarcoplasmic reticulum micro-architecture and altered t-tubule structure in human heart failure.

作者信息

Cannell M B, Crossman D J, Soeller C

机构信息

Department of Physiology, Faculty of Medicine and Health Sciences, University of Auckland, Grafton, Auckland, New Zealand.

出版信息

J Muscle Res Cell Motil. 2006;27(5-7):297-306. doi: 10.1007/s10974-006-9089-y. Epub 2006 Aug 4.

Abstract

Using a Monte-Carlo model of L-type Ca2+ channel (DHPR) gating, we have examined the effect of changes in the early time course of the action potential as seen in human heart failure on excitation contraction coupling. The time course of DHPR Ca2+ influx was coupled into a simple model of sarcoplasmic reticulum Ca2+ release. Our model shows that the loss of the initial spike in human heart failure should reduce the synchrony of Ca2+ spark production and lead to the appearance of late Ca2+ sparks and greater non-uniformity of intracellular Ca2+. Within the junctional space of the cardiac dyad, a small increase in the mean distance of a DHPR from a RyR results in a marked decrease in the ability of the DHPR-mediated increase in local [Ca2+] concentration to activate RyRs. This suggests that the efficiency of EC coupling may be reduced if changes in micro-architecture develop and such effects have been noted in experimental models of heart failure. High resolution imaging of t-tubules in tachycardia-induced heart failure show deranged t-tubule structure. While in normal human hearts t-tubules run mainly in a radial direction, t-tubules in the heart failure samples were oriented more toward the long axis of the cell. In addition, t-tubules may become dilated and bifurcated. Our data suggest that changes in the micro-architecture of the cell and membrane structures associated with excitation-contraction coupling, combined with changes in early action potential configuration can reduce the efficiency by which Ca2+ influx via DHPRs can activate SR calcium release and cardiac contraction. While the underlying cause of these effects is unclear, our data suggest that geometric factors can play an important role in the pathophysilogy of the human heart in failure.

摘要

利用L型Ca2+通道(二氢吡啶受体,DHPR)门控的蒙特卡洛模型,我们研究了人类心力衰竭时动作电位早期时程变化对兴奋-收缩偶联的影响。将DHPR Ca2+内流的时程纳入肌浆网Ca2+释放的简单模型。我们的模型显示,人类心力衰竭时初始尖峰的消失会降低Ca2+火花产生的同步性,并导致晚期Ca2+火花的出现以及细胞内Ca2+的更大不均匀性。在心脏二联体的连接空间内,DHPR与雷诺丁受体(RyR)平均距离的小幅增加会导致DHPR介导的局部[Ca2+]浓度升高激活RyR的能力显著下降。这表明,如果微结构发生变化,兴奋-收缩偶联效率可能会降低,并且在心力衰竭的实验模型中已经注意到了这种效应。对心动过速诱导的心力衰竭中横管的高分辨率成像显示横管结构紊乱。在正常人类心脏中,横管主要沿径向走行,而心力衰竭样本中的横管更倾向于沿细胞长轴方向排列。此外,横管可能会扩张和分支。我们的数据表明,与兴奋-收缩偶联相关的细胞和膜结构的微结构变化,与早期动作电位构型的变化相结合,会降低通过DHPR的Ca2+内流激活肌浆网钙释放和心脏收缩的效率。虽然这些效应的潜在原因尚不清楚,但我们的数据表明几何因素在人类心力衰竭的病理生理学中可能起重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验