Department of Pharmacology, University of California Davis, Davis, CA, USA.
Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.
J Physiol. 2023 Jul;601(13):2655-2683. doi: 10.1113/JP283363. Epub 2022 Oct 27.
Intracellular calcium (Ca ) cycling is tightly regulated in the healthy heart ensuring effective contraction. This is achieved by transverse (t)-tubule membrane invaginations that facilitate close coupling of key Ca -handling proteins such as the L-type Ca channel and Na -Ca exchanger (NCX) on the cell surface with ryanodine receptors (RyRs) on the intracellular Ca store. Although less abundant and regular than in the ventricle, t-tubules also exist in atrial myocytes as a network of transverse invaginations with axial extensions known as the transverse-axial tubule system (TATS). In heart failure and atrial fibrillation, there is TATS remodelling that is associated with aberrant Ca -handling and Ca -induced arrhythmic activity; however, the mechanism underlying this is not fully understood. To address this, we developed a novel 3D human atrial myocyte model that couples electrophysiology and Ca -handling with variable TATS organization and density. We extensively parameterized and validated our model against experimental data to build a robust tool examining TATS regulation of subcellular Ca release. We found that varying TATS density and thus the localization of key Ca -handling proteins has profound effects on Ca handling. Following TATS loss, there is reduced NCX that results in increased cleft Ca concentration through decreased Ca extrusion. This elevated Ca increases RyR open probability causing spontaneous Ca releases and the promotion of arrhythmogenic waves (especially in the cell interior) leading to voltage instabilities through delayed afterdepolarizations. In summary, the present study demonstrates a mechanistic link between TATS remodelling and Ca -driven proarrhythmic behaviour that probably reflects the arrhythmogenic state observed in disease. KEY POINTS: Transverse-axial tubule systems (TATS) modulate Ca handling and excitation-contraction coupling in atrial myocytes, with TATS remodelling in heart failure and atrial fibrillation being associated with altered Ca cycling and subsequent arrhythmogenesis. To investigate the poorly understood mechanisms linking TATS variation and spontaneous Ca release, we built, parameterized and validated a 3D human atrial myocyte model coupling electrophysiology and spatially-detailed subcellular Ca handling governed by the TATS. Simulated TATS loss causes diastolic Ca and voltage instabilities through reduced Na -Ca exchanger-mediated Ca removal, cleft Ca accumulation and increased ryanodine receptor open probability, resulting in spontaneous Ca release and promotion of arrhythmogenic waves and delayed afterdepolarizations. At fast electrical rates typical of atrial tachycardia/fibrillation, spontaneous Ca releases are larger and more frequent in the cell interior than at the periphery. Our work provides mechanistic insight into how atrial TATS remodelling can lead to Ca -driven instabilities that may ultimately contribute to the arrhythmogenic state in disease.
细胞内钙(Ca )循环在健康心脏中受到严格调节,以确保有效的收缩。这是通过横向(t)-小管膜内陷来实现的,这种内陷有助于将关键的 Ca 处理蛋白,如 L 型 Ca 通道和 Na -Ca 交换体(NCX)紧密偶联到细胞表面上的肌浆网 Ca 释放通道(RyRs)上。尽管在心房肌细胞中,t-小管的丰度和规律性都不如心室,但它们也存在作为一个具有轴向延伸的横向-轴向小管系统(TATS)的网络。在心力衰竭和心房颤动中,存在 TATS 重塑,这与异常的 Ca 处理和 Ca 诱导的心律失常活动有关;然而,其背后的机制尚未完全阐明。为了解决这个问题,我们开发了一种新的 3D 人源心房肌细胞模型,该模型将电生理学和 Ca 处理与可变的 TATS 组织和密度结合在一起。我们广泛地对模型进行了参数化和验证,以实验数据为依据,构建了一个稳健的工具来检查 TATS 对亚细胞 Ca 释放的调节作用。我们发现,改变 TATS 的密度,从而改变关键的 Ca 处理蛋白的定位,对 Ca 处理有深远的影响。在 TATS 丧失后,由于 NCX 的减少,导致通过减少 Ca 外排而增加细胞间隙 Ca 浓度。这种升高的 Ca 会增加 RyR 开放概率,导致自发性 Ca 释放,并促进心律失常波(尤其是在细胞内部)的产生,通过延迟后除极导致电压不稳定。总之,本研究证明了 TATS 重塑与 Ca 驱动的致心律失常行为之间存在机制联系,这可能反映了疾病中观察到的心律失常状态。关键点:横向-轴向小管系统(TATS)调节心房肌细胞的 Ca 处理和兴奋-收缩偶联,心力衰竭和心房颤动中的 TATS 重塑与 Ca 循环改变和随后的心律失常发生有关。为了研究连接 TATS 变化和自发性 Ca 释放的机制,我们构建、参数化和验证了一个 3D 人源心房肌细胞模型,该模型将电生理学和受 TATS 控制的空间详细的亚细胞 Ca 处理结合在一起。模拟的 TATS 丧失通过减少 Na -Ca 交换体介导的 Ca 去除、细胞间隙 Ca 积累和增加肌浆网 Ca 释放通道开放概率导致舒张期 Ca 和电压不稳定,从而导致自发性 Ca 释放和心律失常波的促进以及延迟后除极。在典型的心房心动过速/颤动的快速电率下,与细胞边缘相比,细胞内部的自发性 Ca 释放更大且更频繁。我们的工作提供了关于心房 TATS 重塑如何导致 Ca 驱动的不稳定性的机制见解,这种不稳定性最终可能导致疾病中的心律失常状态。