Suppr超能文献

Fibrillin immunoreactive fibers constitute a unique network in the human dermis: immunohistochemical comparison of the distributions of fibrillin, vitronectin, amyloid P component, and orcein stainable structures in normal skin and elastosis.

作者信息

Dahlbäck K, Ljungquist A, Löfberg H, Dahlbäck B, Engvall E, Sakai L Y

机构信息

Department of Dermatology, University of Lund, University Hospital, Sweden.

出版信息

J Invest Dermatol. 1990 Mar;94(3):284-91. doi: 10.1111/1523-1747.ep12874430.

Abstract

Fibrillin, a 350-kD glycoprotein, was recently localized to elastin-associated 10 nm microfibrils. Here, the distribution of fibrillin immunoreactivity was determined in normal skin in individuals of different ages and in lesions of solar elastosis or anetoderma. It was compared with the distribution of orcein-stainable fibers and with the immunoreactivities of vitronectin and amyloid P component. These glycoproteins are known to occur in conjunction with the orcein-stainable elastic fibers in adults, but not in the young. Fibrillin immunoreactivity was associated with orcein-stainable fibers in normal skin of both adults and the young. In addition, the fibrillin immunoreactive fiber network comprised fine fibers that were unstainable by orcein, anti-vitronectin, or anti-amyloid P component. Such fine fibers were especially abundant close to the dermal-epidermal junction zone. Immunoreactivities of anti-vitronectin and anti-amyloid P component were not always associated with fibrillin immunoreactivity but were consistently found to co-localize with orcein-stainable fibers in adults. This suggests vitronectin and amyloid P component to be associated with the amorphous elastin rather than with the microfibrils, although alternative interpretations are possible. In elastotic lesions, fibrillin immunoreactivity was generally fainter than that obtained using anti-vitronectin or anti-amyloid P component. In contrast, an extensive network of dermal fibers stained by anti-fibrillin, but not by anti-amyloid P component, anti-vitronectin, or orcein, was seen in an anetoderma lesion. In conclusion, fibrillin immunoreactivity is associated with a unique dermal network, which ultrastructurally is composed of microfibrils. These fibers are proposed to have an important structural and functional role in anchoring the dermal elastic fibers in the extracellular matrix and to the lamina densa.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验