Raghunathan A V, Aluru N R
Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, 61801, USA.
Phys Rev Lett. 2006 Jul 14;97(2):024501. doi: 10.1103/PhysRevLett.97.024501. Epub 2006 Jul 10.
We investigate single-file osmosis of water through a semipermeable membrane with an uncharged, a positively and a negatively charged nanopore. Molecular dynamics simulations indicate that the osmotic flux through a negatively charged pore (J_) is higher compared to the osmotic flux in a positively charged pore (J+) followed by the osmotic flux in the uncharged pore (J(0)), i.e., J_ > J+ > J(0). The molecular mechanisms governing osmosis, steady state osmosis, and the observed osmotic flux dependence on the nanopore charge are explained by computing all the molecular interactions involved and identifying the molecular interactions that play an important role during and after osmosis. This study helps in a fundamental understanding of osmosis and in the design of advanced nanoporous membranes for various applications of osmosis.
我们研究了水通过具有不带电、带正电和带负电纳米孔的半透膜的单分子层渗透。分子动力学模拟表明,与带正电纳米孔中的渗透通量(J+)相比,带负电纳米孔中的渗透通量(J_)更高,其次是不带电纳米孔中的渗透通量(J(0)),即J_ > J+ > J(0)。通过计算所有涉及的分子相互作用并确定在渗透过程中和渗透后起重要作用的分子相互作用,解释了控制渗透、稳态渗透以及观察到的渗透通量对纳米孔电荷的依赖性的分子机制。这项研究有助于从根本上理解渗透,并有助于设计用于各种渗透应用的先进纳米多孔膜。