Suppr超能文献

从互相关检测到的大型神经元网络中的时空结构。

Spatiotemporal structure in large neuronal networks detected from cross-correlation.

作者信息

Schneider Gaby, Havenith Martha N, Nikolić Danko

机构信息

Department of Computer Science and Mathematics, Johann Wolfgang Goethe University, Frankfurt (Main), Germany.

出版信息

Neural Comput. 2006 Oct;18(10):2387-413. doi: 10.1162/neco.2006.18.10.2387.

Abstract

The analysis of neuronal information involves the detection of spatiotemporal relations between neuronal discharges. We propose a method that is based on the positions (phase offsets) of the central peaks obtained from pairwise cross-correlation histograms. Data complexity is reduced to a one-dimensional representation by using redundancies in the measured phase offsets such that each unit is assigned a "preferred firing time" relative to the other units in the group. We propose two procedures to examine the applicability of this method to experimental data sets. In addition, we propose methods that help the investigation of dynamical changes in the preferred firing times of the units. All methods are applied to a sample data set obtained from cat visual cortex.

摘要

对神经元信息的分析涉及检测神经元放电之间的时空关系。我们提出了一种基于从成对互相关直方图中获得的中心峰值位置(相位偏移)的方法。通过利用测量到的相位偏移中的冗余,将数据复杂性降低到一维表示,从而为每个单元相对于组中的其他单元分配一个“首选放电时间”。我们提出了两个程序来检验该方法对实验数据集的适用性。此外,我们还提出了有助于研究单元首选放电时间动态变化的方法。所有方法都应用于从猫视觉皮层获得的样本数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验