Department of Radiology, Washington University, St. Louis, MO 63110, USA.
Department of Psychiatry, Washington University, St. Louis, MO 63110, USA.
Cereb Cortex. 2020 Mar 14;30(3):1716-1734. doi: 10.1093/cercor/bhz198.
Spontaneous infra-slow (<0.1 Hz) fluctuations in functional magnetic resonance imaging (fMRI) signals are temporally correlated within large-scale functional brain networks, motivating their use for mapping systems-level brain organization. However, recent electrophysiological and hemodynamic evidence suggest state-dependent propagation of infra-slow fluctuations, implying a functional role for ongoing infra-slow activity. Crucially, the study of infra-slow temporal lag structure has thus far been limited to large groups, as analyzing propagation delays requires extensive data averaging to overcome sampling variability. Here, we use resting-state fMRI data from 11 extensively-sampled individuals to characterize lag structure at the individual level. In addition to stable individual-specific features, we find spatiotemporal topographies in each subject similar to the group average. Notably, we find a set of early regions that are common to all individuals, are preferentially positioned proximal to multiple functional networks, and overlap with brain regions known to respond to diverse behavioral tasks-altogether consistent with a hypothesized ability to broadly influence cortical excitability. Our findings suggest that, like correlation structure, temporal lag structure is a fundamental organizational property of resting-state infra-slow activity.
功能磁共振成像(fMRI)信号中的自发超慢(<0.1 Hz)波动在大尺度功能脑网络内具有时间相关性,这促使人们将其用于绘制系统水平的大脑组织图。然而,最近的电生理和血液动力学证据表明超慢波动的状态依赖性传播,这意味着持续的超慢活动具有功能作用。至关重要的是,到目前为止,超慢时间滞后结构的研究仅限于大型群体,因为分析传播延迟需要广泛的数据平均化来克服采样变异性。在这里,我们使用 11 名个体进行了广泛采样的静息态 fMRI 数据来描述个体水平的滞后结构。除了稳定的个体特定特征外,我们还发现每个主体的时空拓扑结构与组平均值相似。值得注意的是,我们发现了一组早期区域,这些区域存在于所有个体中,优先位于多个功能网络附近,并与已知对各种行为任务有反应的大脑区域重叠——这与假设的广泛影响皮质兴奋性的能力是一致的。我们的发现表明,与相关结构一样,时间滞后结构是静息状态超慢活动的基本组织特性。