Suppr超能文献

用于实时脑电磁成像的子空间投影滤波器

Subspace projection filters for real-time brain electromagnetic imaging.

作者信息

Congedo Marco

机构信息

TECH/IDEA/TIPS Laboratory, France Telecom R&D, Grenoble.

出版信息

IEEE Trans Biomed Eng. 2006 Aug;53(8):1624-34. doi: 10.1109/TBME.2006.878055.

Abstract

An increasing number of neuroimaging laboratories are becoming interested in real-time investigations of the human brain. The opportunities offered by real-time applications are inversely proportional to the latency of the brain activity response and to the computational delay of brain activity estimation. Electromagnetic tomographies, based on electroencephalography (EEG) or magnetoencephalography (MEG), feature immediacy of brain activity response and excellent time resolution, hence they are natural candidates. However their spatial resolution and signal-to-noise ratio are poor. In this paper, we develop data-independent and data-dependent subspace projection filters for the standardized low-resolution electromagnetic tomography (sLORETA), a weighted minimum norm inverse solution for EEG/MEG. The filters are designed for extracting time-series of source activity in any given region of interest. The data-independent filter is shown to reduce interference of sources originating in neighboring regions, whereas the data-dependent filter is shown to suppress sensor measurement noise. An effective and straightforward way to combine them is demonstrated. The result is a dual subspace projection allowing both noise suppression and interference reduction.

摘要

越来越多的神经成像实验室开始对人类大脑的实时研究感兴趣。实时应用所提供的机会与大脑活动响应的延迟以及大脑活动估计的计算延迟成反比。基于脑电图(EEG)或脑磁图(MEG)的电磁断层成像具有大脑活动响应的即时性和出色的时间分辨率,因此它们是天然的选择。然而,它们的空间分辨率和信噪比很差。在本文中,我们为标准化低分辨率电磁断层成像(sLORETA)开发了与数据无关和与数据相关的子空间投影滤波器,sLORETA是一种用于EEG/MEG的加权最小范数逆解。这些滤波器旨在提取任何给定感兴趣区域中的源活动时间序列。结果表明,与数据无关的滤波器可减少源自相邻区域的源干扰,而与数据相关的滤波器可抑制传感器测量噪声。本文展示了一种有效且直接的方法来组合它们。结果是一种双子空间投影,可同时实现噪声抑制和干扰减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验