Yetik Imam Samil, Nehorai Arye, Lewine Jeffrey David, Muravchik Carlos H
Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
IEEE Trans Biomed Eng. 2005 Mar;52(3):471-9. doi: 10.1109/TBME.2004.843289.
Performances of electroencephalography (EEG) and magnetoencephalography (MEG) source estimation methods depend on the validity of the assumed model. In many cases, the model structure is related to physical information. We discuss a number of statistical selection methods to distinguish between two possible models using least-squares estimation and assuming a spherical head model. The first model has a single moving source whereas the second has two stationary sources; these may result in similar EEG/MEG measurements. The need to decide between such models occurs for example in Jacksonian seizures (e.g., epilepsy) or in intralobular activities, where a model with either two stationary dipole sources or a single moving dipole source may be possible. We also show that all of the selection methods discussed choose the correct model with probability one when the number of trials goes to infinity. Finally we present numerical examples and compare the performances of the methods by varying parameters such as the signal-to-noise ratio, source depth, and separation of sources, and also apply the methods to real MEG data for epilepsy.
脑电图(EEG)和脑磁图(MEG)源估计方法的性能取决于所假设模型的有效性。在许多情况下,模型结构与物理信息相关。我们讨论了一些统计选择方法,这些方法使用最小二乘法估计并假设球形头部模型,以区分两种可能的模型。第一种模型有一个移动源,而第二种模型有两个静止源;这两种模型可能会产生相似的脑电图/脑磁图测量结果。例如,在杰克逊癫痫发作(如癫痫)或小叶内活动中,就需要在这样的模型之间做出抉择,在这些情况下,可能存在具有两个静止偶极源或一个移动偶极源的模型。我们还表明,当试验次数趋于无穷大时,所讨论的所有选择方法都以概率1选择正确的模型。最后,我们给出数值示例,并通过改变诸如信噪比、源深度和源间距等参数来比较这些方法的性能,并且还将这些方法应用于癫痫的实际脑磁图数据。