Suppr超能文献

BphK的三元复合物结构,BphK是一种可对多氯联苯代谢物进行还原性脱氯的细菌谷胱甘肽S-转移酶。

Structures of ternary complexes of BphK, a bacterial glutathione S-transferase that reductively dechlorinates polychlorinated biphenyl metabolites.

作者信息

Tocheva Elitza I, Fortin Pascal D, Eltis Lindsay D, Murphy Michael E P

机构信息

Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.

出版信息

J Biol Chem. 2006 Oct 13;281(41):30933-40. doi: 10.1074/jbc.M603125200. Epub 2006 Aug 17.

Abstract

Prokaryotic glutathione S-transferases are as diverse as their eukaryotic counterparts but are much less well characterized. BphK from Burkholderia xenovorans LB400 consumes two GSH molecules to reductively dehalogenate chlorinated 2-hydroxy-6-oxo-6-phenyl-2,4-dienoates (HOPDAs), inhibitory polychlorinated biphenyl metabolites. Crystallographic structures of two ternary complexes of BphK were solved to a resolution of 2.1A. In the BphK-GSH-HOPDA complex, GSH and HOPDA molecules occupy the G- and H-subsites, respectively. The thiol nucleophile of the GSH molecule is positioned for SN2 attack at carbon 3 of the bound HOPDA. The respective sulfur atoms of conserved Cys-10 and the bound GSH are within 3.0A, consistent with product release and the formation of a mixed disulfide intermediate. In the BphK-(GSH)2 complex, a GSH molecule occupies each of the two subsites. The three sulfur atoms of the two GSH molecules and Cys-10 are aligned suitably for a disulfide exchange reaction that would regenerate the resting enzyme and yield disulfide-linked GSH molecules. A second conserved residue, His-106, is adjacent to the thiols of Cys-10 and the GSH bound to the G-subsite and thus may stabilize a transition state in the disulfide exchange reaction. Overall, the structures support and elaborate a proposed dehalogenation mechanism for BphK and provide insight into the plasticity of the H-subsite.

摘要

原核生物谷胱甘肽S-转移酶与其真核生物对应物一样多样,但特征描述却少得多。来自嗜麦芽窄食单胞菌LB400的BphK消耗两个谷胱甘肽分子,对氯化的2-羟基-6-氧代-6-苯基-2,4-二烯酸酯(HOPDAs)进行还原脱卤,HOPDAs是多氯联苯的抑制性代谢产物。解析了BphK的两个三元复合物的晶体结构,分辨率达到2.1埃。在BphK-谷胱甘肽-HOPDA复合物中,谷胱甘肽和HOPDA分子分别占据G和H亚位点。谷胱甘肽分子的硫醇亲核试剂定位为对结合的HOPDA的3位碳进行SN2攻击。保守的半胱氨酸-10的相应硫原子与结合的谷胱甘肽的硫原子在3.0埃范围内,这与产物释放和混合二硫键中间体的形成一致。在BphK-(谷胱甘肽)2复合物中,一个谷胱甘肽分子占据两个亚位点中的每一个。两个谷胱甘肽分子的三个硫原子和半胱氨酸-10的硫原子适当地排列,以进行二硫键交换反应,该反应将使静止的酶再生并产生二硫键连接的谷胱甘肽分子。第二个保守残基组氨酸-106与半胱氨酸-10的硫醇以及与G亚位点结合的谷胱甘肽相邻,因此可能稳定二硫键交换反应中的过渡态。总体而言,这些结构支持并详细阐述了提出的BphK脱卤机制,并深入了解了H亚位点的可塑性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验