Department of Biochemistry and Molecular Biology, University of British Columbia, BC, Canada.
Purdue Cancer Research Center and Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
Biochemistry. 2013 Aug 20;52(33):5685-5695. doi: 10.1021/bi400774m. Epub 2013 Aug 9.
DxnB2 and BphD are meta-cleavage product (MCP) hydrolases that catalyze C-C bond hydrolysis of the biphenyl metabolite 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA). BphD is a bottleneck in the bacterial degradation of polychlorinated biphenyls (PCBs) by the Bph catabolic pathway due in part to inhibition by 3-Cl HOPDAs. By contrast, DxnB2 from Sphingomonas wittichii RW1 catalyzes the hydrolysis of 3-Cl HOPDAs more efficiently. X-ray crystallographic studies of the catalytically inactive S105A variant of DxnB2 complexed with 3-Cl HOPDA revealed a binding mode in which C1 through C6 of the dienoate are coplanar. The chlorine substituent is accommodated by a hydrophobic pocket that is larger than the homologous site in BphDLB400 from Burkholderia xenovorans LB400. The planar binding mode observed in the crystalline complex was consistent with the hyper- and hypsochromically shifted absorption spectra of 3-Cl and 3,9,11-triCl HOPDA, respectively, bound to S105A in solution. Moreover, ES(red), an intermediate possessing a bathochromically shifted spectrum observed in the turnover of HOPDA, was not detected, suggesting that substrate destabilization was rate-limiting in the turnover of these PCB metabolites. Interestingly, electron density for the first α-helix of the lid domain was poorly defined in the dimeric DxnB2 structures, unlike in the tetrameric BphDLB400. Structural comparison of MCP hydrolases identified the NC-loop, connecting the lid to the α/β-hydrolase core domain, as a determinant in the oligomeric state and suggests its involvement in catalysis. Finally, an increased mobility of the DxnB2 lid may contribute to the enzyme's ability to hydrolyze PCB metabolites, highlighting how lid architecture contributes to substrate specificity in α/β-hydrolases.
DxnB2 和 BphD 是元切割产物(MCP)水解酶,可催化联苯代谢物 2-羟基-6-氧代-6-苯基己-2,4-二烯酸(HOPDA)的 C-C 键水解。BphD 是 Bph 代谢途径中细菌降解多氯联苯(PCBs)的瓶颈,部分原因是 3-Cl HOPDAs 的抑制作用。相比之下,来自 Sphingomonas wittichii RW1 的 DxnB2 更有效地催化 3-Cl HOPDAs 的水解。与催化无活性的 S105A 变体复合的 DxnB2 与 3-Cl HOPDA 的 X 射线晶体结构研究揭示了一种结合模式,其中二烯酸的 C1 到 C6 共面。氯取代基被容纳在一个疏水性口袋中,该口袋比 Burkholderia xenovorans LB400 中的同源位点更大。在结晶复合物中观察到的平面结合模式与 3-Cl 和 3,9,11-三 Cl HOPDA 分别在溶液中与 S105A 结合时的超和hypsochromically 位移的吸收光谱一致。此外,在 HOPDA 周转过程中观察到的具有红移光谱的 ES(red) 中间体未被检测到,这表明在这些 PCB 代谢物的周转中,底物的失稳是限速步骤。有趣的是,与四聚体 BphDLB400 不同,在二聚体 DxnB2 结构中 lid 结构域的第一个α-螺旋的电子密度定义较差。MCP 水解酶的结构比较确定了连接 lid 与 α/β-水解酶核心结构域的 NC-环是寡聚状态的决定因素,并表明其参与催化。最后,DxnB2 lid 的更大的可动性可能有助于酶水解 PCB 代谢物的能力,突出了 lid 结构如何在 α/β-水解酶中促进底物特异性。