Wang JiuJiang, Liu Xin, Yu YuanYu, Li Yao, Cheng ChingHsiang, Zhang Shuang, Mak PengUn, Vai MangI, Pun SioHang
College of Computer Science and AI, Neijiang Normal University, Neijiang 641100, China.
State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macau 999078, China.
Micromachines (Basel). 2021 Jun 18;12(6):714. doi: 10.3390/mi12060714.
Analytical modeling of capacitive micromachined ultrasonic transducer (CMUT) is one of the commonly used modeling methods and has the advantages of intuitive understanding of the physics of CMUTs and convergent when modeling of collapse mode CMUT. This review article summarizes analytical modeling of the collapse voltage and shows that the collapse voltage of a CMUT correlates with the effective gap height and the electrode area. There are analytical expressions for the collapse voltage. Modeling of the membrane deflections are characterized by governing equations from Timoshenko, von Kármán equations and the 2D plate equation, and solved by various methods such as Galerkin's method and perturbation method. Analytical expressions from Timoshenko's equation can be used for small deflections, while analytical expression from von Kármán equations can be used for both small and large deflections.
电容式微机械超声换能器(CMUT)的解析建模是常用的建模方法之一,具有直观理解CMUT物理原理以及在对坍塌模式CMUT进行建模时收敛的优点。这篇综述文章总结了坍塌电压的解析建模,并表明CMUT的坍塌电压与有效间隙高度和电极面积相关。存在坍塌电压的解析表达式。膜片挠度的建模以铁木辛柯方程、冯·卡门方程和二维板方程的控制方程为特征,并通过诸如伽辽金法和微扰法等各种方法求解。铁木辛柯方程的解析表达式可用于小挠度情况,而冯·卡门方程的解析表达式可用于小挠度和大挠度情况。