Suppr超能文献

运动学线索与自我产生动作的识别

Kinematic cues and recognition of self-generated actions.

作者信息

Daprati Elena, Wriessnegger Selina, Lacquaniti Francesco

机构信息

Department of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179, Rome, Italy.

出版信息

Exp Brain Res. 2007 Feb;177(1):31-44. doi: 10.1007/s00221-006-0646-9. Epub 2006 Aug 22.

Abstract

In the present study, we addressed the issue of whether healthy individuals can recognize a given gesture as their own, based on kinematic information. To this purpose, we required 36 volunteers to execute a series of hand movements of increasing complexity, while their kinematics was recorded by a motion-capture system. In a later session, we showed them a series of computer animations where a virtual hand, rendered as a simple stick-diagram, was animated by the kinematics recorded from the participants in the previous session. Their task was to recognize their own movements, choosing from three alternatives. To test the contribution of various potential cues to action recognition, the roles of (1) access to motor representation, (2) gesture complexity, and (3) familiarity effects were separately investigated. The results support the hypothesis that kinematic templates rather than single motor parameters contribute to self-recognition in the absence of morphological cues.

摘要

在本研究中,我们探讨了健康个体能否基于运动学信息将特定手势识别为自己的手势这一问题。为此,我们要求36名志愿者执行一系列复杂程度不断增加的手部动作,同时通过动作捕捉系统记录他们的运动学信息。在随后的环节中,我们向他们展示了一系列计算机动画,其中虚拟手被呈现为简单的线条图,并根据上一环节参与者记录的运动学信息进行动画处理。他们的任务是从三个选项中识别出自己的动作。为了测试各种潜在线索对动作识别的贡献,我们分别研究了(1)运动表征的获取、(2)手势复杂性和(3)熟悉度效应的作用。结果支持了这样的假设,即在没有形态线索的情况下,运动学模板而非单个运动参数有助于自我识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验