Suppr超能文献

烧伤后心脏线粒体损伤与活性氧防御功能丧失:抗氧化治疗的有益作用。

Cardiac mitochondrial damage and loss of ROS defense after burn injury: the beneficial effects of antioxidant therapy.

作者信息

Zang Qun, Maass David L, White Jean, Horton Jureta W

机构信息

Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9160, USA.

出版信息

J Appl Physiol (1985). 2007 Jan;102(1):103-12. doi: 10.1152/japplphysiol.00359.2006. Epub 2006 Aug 24.

Abstract

Mechanisms of burn-related cardiac dysfunction may involve defects in mitochondria. This study determined 1) whether burn injury alters myocardial mitochondrial integrity and function; and 2) whether an antioxidant vitamin therapy prevented changes in cardiac mitochondrial function after burn. Sprague-Dawley rats were given a 3 degrees burn over 40% total body surface area and fluid resuscitated. Antioxidant vitamins or vehicle were given to sham and burn rats. Mitochondrial and cytosolic fractions were prepared from heart tissues at several times postburn. In mitochondria, lipid peroxidation was measured to assess oxidative stress, mitochondrial outer membrane damage and cytochrome-c translocation were determined to estimate mitochondrial integrity, and activities of SOD and glutathione peroxidase were examined to evaluate mitochondrial antioxidant defense. Cardiac function was measured by Langendorff model in sham and burn rats given either vitamins or vehicle. Twenty-four hours postburn, mitochondrial outer membrane damage was progressively increased to approximately 50%, and cytosolic cytochrome-c gradually accumulated to approximately three times more than that measured in shams, indicating impaired mitochondrial integrity. Maximal decrease of mitochondrial SOD activity occurred 8 h postburn ( approximately 63.5% of shams), whereas maximal decrease in glutathione peroxidase activity persisted 2-24 h postburn ( approximately 60% of shams). In burn animals, lipid peroxidation in cardiac mitochondria increased 30-50%, suggesting burn-induced oxidative stress. Antioxidant vitamin therapy prevented burn-related loss of membrane integrity and antioxidant defense in myocardial mitochondria and prevented cardiac dysfunction. These data suggest that burn-mediated mitochondrial dysfunction and loss of reactive oxygen species defense may play a role in postburn cardiac dysfunction.

摘要

烧伤相关性心脏功能障碍的机制可能涉及线粒体缺陷。本研究旨在确定:1)烧伤是否会改变心肌线粒体的完整性和功能;2)抗氧化维生素疗法能否预防烧伤后心脏线粒体功能的变化。将Sprague-Dawley大鼠全身40%体表面积进行3度烧伤,并给予液体复苏。给假手术组和烧伤组大鼠给予抗氧化维生素或赋形剂。在烧伤后的不同时间点从心脏组织中制备线粒体和胞质组分。在线粒体中,测量脂质过氧化以评估氧化应激,测定线粒体外膜损伤和细胞色素c易位以评估线粒体完整性,并检测超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶的活性以评估线粒体抗氧化防御。通过Langendorff模型测量给予维生素或赋形剂的假手术组和烧伤组大鼠的心脏功能。烧伤后24小时,线粒体外膜损伤逐渐增加至约50%,胞质细胞色素c逐渐积累至比假手术组测量值多约三倍,表明线粒体完整性受损。线粒体SOD活性在烧伤后8小时出现最大降幅(约为假手术组的63.5%),而谷胱甘肽过氧化物酶活性的最大降幅在烧伤后2 - 24小时持续存在(约为假手术组的60%)。在烧伤动物中,心脏线粒体中的脂质过氧化增加了30 - 50%,提示烧伤诱导的氧化应激。抗氧化维生素疗法可预防烧伤相关的心肌线粒体膜完整性丧失和抗氧化防御能力下降,并预防心脏功能障碍。这些数据表明,烧伤介导的线粒体功能障碍和活性氧防御能力丧失可能在烧伤后心脏功能障碍中起作用。

相似文献

1
Cardiac mitochondrial damage and loss of ROS defense after burn injury: the beneficial effects of antioxidant therapy.
J Appl Physiol (1985). 2007 Jan;102(1):103-12. doi: 10.1152/japplphysiol.00359.2006. Epub 2006 Aug 24.
2
Estrogen-provided cardiac protection following burn trauma is mediated through a reduction in mitochondria-derived DAMPs.
Am J Physiol Heart Circ Physiol. 2014 Mar;306(6):H882-94. doi: 10.1152/ajpheart.00475.2013. Epub 2014 Jan 24.
3
Burn serum causes a CD14-dependent mitochondrial damage in primary cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1951-8. doi: 10.1152/ajpheart.00927.2009. Epub 2010 Mar 26.
4
Antioxidant vitamin therapy alters burn trauma-mediated cardiac NF-kappaB activation and cardiomyocyte cytokine secretion.
J Trauma. 2001 Mar;50(3):397-406; discussion 407-8. doi: 10.1097/00005373-200103000-00002.
5
Cardiac mitochondrial damage and inflammation responses in sepsis.
Surg Infect (Larchmt). 2007 Feb;8(1):41-54. doi: 10.1089/sur.2006.033.
6
Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy.
Toxicology. 2003 Jul 15;189(1-2):75-88. doi: 10.1016/s0300-483x(03)00154-9.
7
Cardiomyocyte intracellular calcium and cardiac dysfunction after burn trauma.
Crit Care Med. 2002 Jan;30(1):14-22. doi: 10.1097/00003246-200201000-00003.
9
Role of p38 mitogen-activated protein kinase in cardiac myocyte secretion of the inflammatory cytokine TNF-alpha.
Am J Physiol Heart Circ Physiol. 2001 May;280(5):H1970-81. doi: 10.1152/ajpheart.2001.280.5.H1970.
10

引用本文的文献

1
Mitochondria in cutaneous health, disease, ageing and rejuvenation-the 3PM-guided mitochondria-centric dermatology.
EPMA J. 2025 Feb 14;16(1):1-15. doi: 10.1007/s13167-025-00400-z. eCollection 2025 Mar.
2
Mitochondrial dysfunction and mitophagy: crucial players in burn trauma and wound healing.
Burns Trauma. 2023 Jul 14;11:tkad029. doi: 10.1093/burnst/tkad029. eCollection 2023.
3
The pathogenesis and diagnosis of sepsis post burn injury.
Burns Trauma. 2021 Feb 4;9:tkaa047. doi: 10.1093/burnst/tkaa047. eCollection 2021 Jan.
5
Cutaneous Thermal Injury Modulates Blood and Skin Metabolomes Differently in a Murine Model.
J Burn Care Res. 2021 Aug 4;42(4):727-742. doi: 10.1093/jbcr/iraa209.
6
The Genetic Evidence of Burn-Induced Cardiac Mitochondrial Metabolism Dysfunction.
Biomedicines. 2020 Dec 3;8(12):566. doi: 10.3390/biomedicines8120566.
7
Pathological Responses of Cardiac Mitochondria to Burn Trauma.
Int J Mol Sci. 2020 Sep 11;21(18):6655. doi: 10.3390/ijms21186655.
8
Does Neutrophil Phenotype Predict the Survival of Trauma Patients?
Front Immunol. 2019 Sep 6;10:2122. doi: 10.3389/fimmu.2019.02122. eCollection 2019.
9
Coenzyme Q10 protects against burn-induced mitochondrial dysfunction and impaired insulin signaling in mouse skeletal muscle.
FEBS Open Bio. 2019 Jan 19;9(2):348-363. doi: 10.1002/2211-5463.12580. eCollection 2019 Feb.

本文引用的文献

2
Role of cytosolic vs. mitochondrial Ca2+ accumulation in burn injury-related myocardial inflammation and function.
Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H744-51. doi: 10.1152/ajpheart.00367.2004. Epub 2004 Sep 23.
3
Cytochrome C-mediated apoptosis.
Annu Rev Biochem. 2004;73:87-106. doi: 10.1146/annurev.biochem.73.011303.073706.
4
Calcium and mitochondria.
FEBS Lett. 2004 Jun 1;567(1):96-102. doi: 10.1016/j.febslet.2004.03.071.
5
Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy.
Toxicology. 2003 Jul 15;189(1-2):75-88. doi: 10.1016/s0300-483x(03)00154-9.
6
Plasma oxidative parameters and mortality in patients with severe burn injury.
Intensive Care Med. 2003 Aug;29(8):1380-3. doi: 10.1007/s00134-003-1833-9. Epub 2003 May 27.
7
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling.
Science. 2003 Apr 25;300(5619):650-3. doi: 10.1126/science.1080405.
8
Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells.
Free Radic Biol Med. 2003 Jan 15;34(2):145-69. doi: 10.1016/s0891-5849(02)01197-8.
9
Structure, mechanism and regulation of peroxiredoxins.
Trends Biochem Sci. 2003 Jan;28(1):32-40. doi: 10.1016/s0968-0004(02)00003-8.
10
Understanding the impact of mitochondrial defects in cardiovascular disease: a review.
J Card Fail. 2002 Oct;8(5):347-61. doi: 10.1054/jcaf.2002.127774.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验