Revesz Peter, Wu Shasha
Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
Artif Intell Med. 2006 Oct;38(2):157-70. doi: 10.1016/j.artmed.2006.05.001. Epub 2006 Aug 28.
In this article, we propose new methods to visualize and reason about spatiotemporal epidemiological data.
Efficient computerized reasoning about epidemics is important to public health and national security, but it is a difficult task because epidemiological data are usually spatiotemporal, recursive, and fast changing hence hard to handle in traditional relational databases and geographic information systems.
We describe the general methods of how to (1) store epidemiological data in constraint databases, (2) handle recursive epidemiological definitions, and (3) efficiently reason about epidemiological data based on recursive and non-recursive Structured Query Language (SQL) queries.
We implement a particular epidemiological system called West Nile Virus Information System (WeNiVIS) that enables the visual tracking of and reasoning about the spread of the West Nile Virus (WNV) epidemic in Pennsylvania. In the system, users can do many interesting reasonings based on the spatiotemporal dataset and the recursively defined risk evaluation function through the SQL query interfaces.
In this article, the WeNiVIS system is used to visualize and reason about the spread of West Nile Virus in Pennsylvania as a sample application. Beside this particular case, the general methodology used in the implementation of the system is also appropriate for many other applications. Our general solution for reasoning about epidemics and related spatiotemporal phenomena enables one to solve many problems similar to WNV without much modification.
在本文中,我们提出了可视化和推理时空流行病学数据的新方法。
对流行病进行高效的计算机化推理对公共卫生和国家安全至关重要,但这是一项艰巨的任务,因为流行病学数据通常是时空性的、递归的且变化迅速,因此在传统关系数据库和地理信息系统中难以处理。
我们描述了如何(1)在约束数据库中存储流行病学数据,(2)处理递归流行病学定义,以及(3)基于递归和非递归结构化查询语言(SQL)查询对流行病学数据进行高效推理的一般方法。
我们实现了一个名为西尼罗河病毒信息系统(WeNiVIS)的特定流行病学系统,该系统能够对宾夕法尼亚州西尼罗河病毒(WNV)疫情的传播进行可视化跟踪和推理。在该系统中,用户可以通过SQL查询接口基于时空数据集和递归定义的风险评估函数进行许多有趣的推理。
在本文中,WeNiVIS系统作为一个示例应用,用于可视化和推理宾夕法尼亚州西尼罗河病毒的传播。除了这个特定案例外,该系统实现中使用的一般方法也适用于许多其他应用。我们对流行病及相关时空现象进行推理的通用解决方案使人们能够在无需太多修改的情况下解决许多与西尼罗河病毒类似的问题。