Suppr超能文献

用于心律失常鉴别的分类增强灰色关联分析

Classification enhancible grey relational analysis for cardiac arrhythmias discrimination.

作者信息

Lin Chia-Hung

机构信息

Department of Electrical Engineering, Kao-Yuan University, Kaohsiung, Taiwan.

出版信息

Med Biol Eng Comput. 2006 Apr;44(4):311-20. doi: 10.1007/s11517-006-0027-3. Epub 2006 Mar 23.

Abstract

This paper proposes a method for electrocardiogram (ECG) heartbeat recognition using classification enhancible grey relational analysis (GRA). The ECG beat recognition can be divided into a sequence of stages, starting with feature extraction and then according to characteristics to identify the cardiac arrhythmias including the supraventricular ectopic beat, bundle branch ectopic beat, and ventricular ectopic beat. Gaussian wavelets are used to enhance the features from each heartbeat, and GRA performs the recognition tasks. With the MIT-BIH arrhythmia database, the experimental results demonstrate the efficiency of the proposed non-invasive method. Compared with artificial neural network, the test results also show high accuracy, good adaptability, and faster processing time for the detection of heartbeat signals.

摘要

本文提出了一种使用分类增强型灰色关联分析(GRA)进行心电图(ECG)心跳识别的方法。ECG心跳识别可分为一系列阶段,从特征提取开始,然后根据特征识别心律失常,包括室上性异位搏动、束支异位搏动和室性异位搏动。使用高斯小波增强每个心跳的特征,GRA执行识别任务。通过麻省理工学院-贝斯以色列女执事医疗中心(MIT-BIH)心律失常数据库,实验结果证明了所提出的非侵入性方法的有效性。与人工神经网络相比,测试结果还显示出在检测心跳信号方面具有高精度、良好的适应性和更快的处理时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验