Suppr超能文献

一种基于模糊神经网络的心律失常检测的短时多重分形方法。

A short-time multifractal approach for arrhythmia detection based on fuzzy neural network.

作者信息

Wang Y, Zhu Y S, Thakor N V, Xu Y H

机构信息

Department of Biomedical Engineering, Shanghai Jiao Tong University, China.

出版信息

IEEE Trans Biomed Eng. 2001 Sep;48(9):989-95. doi: 10.1109/10.942588.

Abstract

We have proposed the notion of short-time multifractality and used it to develop a novel approach for arrhythmia detection. Cardiac rhythms are characterized by short-time generalized dimensions (STGDs), and different kinds of arrhythmias are discriminated using a neural network. To advance the accuracy of classification, a new fuzzy Kohonen network, which overcomes the shortcomings of the classical algorithm, is presented. In our paper, the potential of our method for clinical uses and real-time detection was examined using 180 electrocardiogram records [60 atrial fibrillation, 60 ventricular fibrillation, and 60 ventricular tachycardia]. The proposed algorithm has achieved high accuracy (more than 97%) and is computationally fast in detection.

摘要

我们提出了短时多重分形的概念,并利用它开发了一种用于心律失常检测的新方法。心脏节律以短时广义维数(STGDs)为特征,并使用神经网络来区分不同类型的心律失常。为了提高分类的准确性,提出了一种新的模糊科霍宁网络,它克服了经典算法的缺点。在我们的论文中,使用180份心电图记录[60份心房颤动、60份心室颤动和60份室性心动过速]检验了我们的方法在临床应用和实时检测方面的潜力。所提出的算法具有很高的准确率(超过97%),并且在检测时计算速度很快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验