BioComputing Lab., Institute for Bio-Engineering Application Technology, Department of Computer Science and Engineering, KOREATECH, Cheonan 31253, Korea.
Sensors (Basel). 2022 Jun 12;22(12):4450. doi: 10.3390/s22124450.
In this research, a heartbeat classification method is presented based on evolutionary feature optimization using differential evolution (DE) and classification using a probabilistic neural network (PNN) to discriminate between normal and arrhythmic heartbeats. The proposed method follows four steps: (1) preprocessing, (2) heartbeat segmentation, (3) DE feature optimization, and (4) PNN classification. In this method, we have employed direct signal amplitude points constituting the heartbeat acquired from the ECG holter device with no secondary feature extraction step usually used in case of hand-crafted, frequency transformation or other features. The heartbeat types include normal, left bundle branch block, right bundle branch block, premature ventricular contraction, atrial premature, ventricular escape, ventricular flutter and paced beat. Using ECG records from the MIT-BIH, heartbeats are identified to start at 250 ms before and end at 450 ms after the respective R-peak positions. In the next step, the DE method is applied to reduce and optimize the direct heartbeat features. Although complex and highly computational ECG heartbeat classification algorithms have been proposed in the literature, they failed to achieve high performance in detecting some minority heartbeat categories, especially for imbalanced datasets. To overcome this challenge, we propose an optimization step for the deep CNN model using a novel classification metric called the Matthews correlation coefficient (MCC). This function focuses on arrhythmia (minority) heartbeat classes by increasing their importance. Maximum MCC is used as a fitness function to identify the optimum combination of features for the uncorrelated and non-uniformly distributed eight beat class samples. The proposed DE-PNN scheme can provide better classification accuracy considering 8 classes with only 36 features optimized from a 253 element feature set implying an 85.77% reduction in direct amplitude features. Our proposed method achieved overall 99.33% accuracy, 94.56% F1, 93.84% sensitivity, and 99.21% specificity.
在这项研究中,提出了一种基于进化特征优化的心跳分类方法,使用差分进化(DE)和概率神经网络(PNN)进行分类,以区分正常和心律失常的心跳。该方法包括四个步骤:(1)预处理,(2)心跳分割,(3)DE 特征优化,(4)PNN 分类。在该方法中,我们采用了直接信号幅度点构成从 ECG 动态心电图仪获取的心跳,而没有通常在手工制作、频率变换或其他特征的情况下使用的二次特征提取步骤。心跳类型包括正常、左束支传导阻滞、右束支传导阻滞、室性早搏、房性早搏、心室逸搏、室性扑动和起搏心跳。使用来自 MIT-BIH 的 ECG 记录,在各自的 R 波位置之前 250 毫秒开始识别心跳,并在之后 450 毫秒结束。在下一个步骤中,应用 DE 方法来减少和优化直接心跳特征。尽管文献中已经提出了复杂且高度计算的 ECG 心跳分类算法,但它们在检测一些少数心跳类别方面未能实现高性能,特别是对于不平衡数据集。为了克服这一挑战,我们提出了一种使用称为马修斯相关系数(MCC)的新分类度量标准对深度 CNN 模型进行优化的步骤。该函数通过增加其重要性来关注心律失常(少数)心跳类别。最大 MCC 被用作识别非相关且非均匀分布的八个心跳类样本的最优特征组合的适应度函数。考虑到仅从 253 个元素特征集中优化了 36 个特征的 8 个类别,所提出的 DE-PNN 方案可以提供更好的分类精度,这意味着直接幅度特征减少了 85.77%。所提出的方法实现了整体 99.33%的准确率、94.56%的 F1、93.84%的灵敏度和 99.21%的特异性。