Suppr超能文献

肌动蛋白酪氨酸-53的磷酸化抑制细丝成核和伸长,并使细丝不稳定。

Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments.

作者信息

Liu Xiong, Shu Shi, Hong Myoung-Soon S, Levine Rodney L, Korn Edward D

机构信息

Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13694-9. doi: 10.1073/pnas.0606321103. Epub 2006 Aug 30.

Abstract

Dictyostelium actin was shown to become phosphorylated on Tyr-53 late in the developmental cycle and when cells in the amoeboid stage are subjected to stress but the phosphorylated actin had not been purified and characterized. We have separated phosphorylated and unphosphorylated actin and shown that Tyr-53 phosphorylation substantially reduces actin's ability to inactivate DNase I, increases actin's critical concentration, and greatly reduces its rate of polymerization. Tyr-53 phosphorylation substantially, if not completely, inhibits nucleation and elongation from the pointed end of actin filaments and reduces the rate of elongation from the barbed end. Negatively stained electron microscopic images of polymerized Tyr-53-phosphorylated actin show a variable mixture of small oligomers and filaments, which are converted to more typical, long filaments upon addition of myosin subfragment 1. Tyr-53-phosphorylated and unphosphorylated actin copolymerize in vitro, and phosphorylated and unphosphorylated actin colocalize in amoebae. Tyr-53 phosphorylation does not affect the ability of filamentous actin to activate myosin ATPase.

摘要

盘基网柄菌肌动蛋白在发育周期后期以及变形虫阶段的细胞受到应激时,会在Tyr-53位点发生磷酸化,但磷酸化的肌动蛋白尚未得到纯化和表征。我们已经分离出了磷酸化和未磷酸化的肌动蛋白,并表明Tyr-53位点的磷酸化会显著降低肌动蛋白使DNA酶I失活的能力,提高肌动蛋白的临界浓度,并大大降低其聚合速率。Tyr-53位点的磷酸化即使没有完全抑制,也会显著抑制肌动蛋白丝尖端的成核和延伸,并降低其从带刺末端的延伸速率。聚合的Tyr-53磷酸化肌动蛋白的负染色电子显微镜图像显示,小寡聚体和丝的混合物各不相同,加入肌球蛋白亚片段1后会转化为更典型的长丝。Tyr-53磷酸化和未磷酸化的肌动蛋白在体外共聚,并且磷酸化和未磷酸化的肌动蛋白在变形虫中共定位。Tyr-53位点的磷酸化不影响丝状肌动蛋白激活肌球蛋白ATP酶的能力。

相似文献

1
Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments.
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13694-9. doi: 10.1073/pnas.0606321103. Epub 2006 Aug 30.
2
Modulation of actin structure and function by phosphorylation of Tyr-53 and profilin binding.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11748-53. doi: 10.1073/pnas.0805852105. Epub 2008 Aug 8.
3
High levels of actin tyrosine phosphorylation: correlation with the dormant state of Dictyostelium spores.
J Cell Sci. 1998 Oct;111 ( Pt 19):2923-32. doi: 10.1242/jcs.111.19.2923.
4
ForC lacks canonical formin activity but bundles actin filaments and is required for multicellular development of Dictyostelium cells.
Eur J Cell Biol. 2013 Jun-Jul;92(6-7):201-12. doi: 10.1016/j.ejcb.2013.07.001. Epub 2013 Jul 11.
7
A structural model for phosphorylation control of Dictyostelium myosin II thick filament assembly.
J Cell Biol. 1999 Nov 29;147(5):1039-48. doi: 10.1083/jcb.147.5.1039.
8
Mutation of actin Tyr-53 alters the conformations of the DNase I-binding loop and the nucleotide-binding cleft.
J Biol Chem. 2010 Mar 26;285(13):9729-9739. doi: 10.1074/jbc.M109.073452. Epub 2010 Jan 25.
9
Actin filaments mediate Dictyostelium myosin assembly in vitro.
Proc Natl Acad Sci U S A. 1989 Aug;86(16):6161-5. doi: 10.1073/pnas.86.16.6161.
10
Perturbations of the actin cytoskeleton activate a Dictyostelium STAT signalling pathway.
Eur J Cell Biol. 2012 May;91(5):420-5. doi: 10.1016/j.ejcb.2012.01.002. Epub 2012 Feb 22.

引用本文的文献

3
Aggravated Ulcerative Colitis via circNlgn-Mediated Suppression of Nuclear Actin Polymerization.
Research (Wash D C). 2024 Aug 23;7:0441. doi: 10.34133/research.0441. eCollection 2024.
4
From amino-acid to disease: the effects of oxidation on actin-myosin interactions in muscle.
J Muscle Res Cell Motil. 2023 Dec;44(4):225-254. doi: 10.1007/s10974-023-09658-0. Epub 2023 Oct 8.
5
Targeting cytoskeletal phosphorylation in cancer.
Explor Target Antitumor Ther. 2021;2(3):292-308. doi: 10.37349/etat.2021.00047. Epub 2021 Jun 28.
7
Posttranslational modifications of the cytoskeleton.
Cytoskeleton (Hoboken). 2021 Apr;78(4):142-173. doi: 10.1002/cm.21679. Epub 2021 Jul 2.
8
Lysine acetylation of cytoskeletal proteins: Emergence of an actin code.
J Cell Biol. 2020 Dec 7;219(12). doi: 10.1083/jcb.202006151.
9
Actin R256 Mono-methylation Is a Conserved Post-translational Modification Involved in Transcription.
Cell Rep. 2020 Sep 29;32(13):108172. doi: 10.1016/j.celrep.2020.108172.
10
Age-Onset Phosphorylation of a Minor Actin Variant Promotes Intestinal Barrier Dysfunction.
Dev Cell. 2019 Dec 2;51(5):587-601.e7. doi: 10.1016/j.devcel.2019.11.001.

本文引用的文献

1
The dictyostelium kinome--analysis of the protein kinases from a simple model organism.
PLoS Genet. 2006 Mar;2(3):e38. doi: 10.1371/journal.pgen.0020038. Epub 2006 Mar 31.
2
Change in the actin cytoskeleton during seismonastic movement of Mimosa pudica.
Plant Cell Physiol. 2006 Apr;47(4):531-9. doi: 10.1093/pcp/pcj022. Epub 2006 Feb 18.
4
Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis.
Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13111-6. doi: 10.1073/pnas.0503732102. Epub 2005 Aug 31.
5
6
Crystal structure of monomeric actin in the ATP state. Structural basis of nucleotide-dependent actin dynamics.
J Biol Chem. 2003 Sep 5;278(36):34172-80. doi: 10.1074/jbc.M303689200. Epub 2003 Jun 17.
7
Dictyostelium and Acanthamoeba myosin II assembly domains go to the cleavage furrow of Dictyostelium myosin II-null cells.
Proc Natl Acad Sci U S A. 2003 May 27;100(11):6499-504. doi: 10.1073/pnas.0732155100. Epub 2003 May 14.
8
Iron regulatory protein 2 as iron sensor. Iron-dependent oxidative modification of cysteine.
J Biol Chem. 2003 Apr 25;278(17):14857-64. doi: 10.1074/jbc.M300616200. Epub 2003 Feb 18.
9
The formation of actin rods composed of actin tubules in Dictyostelium discoideum spores.
J Struct Biol. 2001 Oct;136(1):7-19. doi: 10.1006/jsbi.2001.4424.
10
Role of the DNase-I-binding loop in dynamic properties of actin filament.
Biophys J. 2002 Jan;82(1 Pt 1):321-34. doi: 10.1016/S0006-3495(02)75397-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验