Suppr超能文献

肌动蛋白 Tyr-53 突变改变了 DNase I 结合环和核苷酸结合裂隙的构象。

Mutation of actin Tyr-53 alters the conformations of the DNase I-binding loop and the nucleotide-binding cleft.

机构信息

Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.

Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

J Biol Chem. 2010 Mar 26;285(13):9729-9739. doi: 10.1074/jbc.M109.073452. Epub 2010 Jan 25.

Abstract

All but 11 of the 323 known actin sequences have Tyr at position 53, and the 11 exceptions have the conservative substitution Phe, which raises the following questions. What is the critical role(s) of Tyr-53, and, if it can be replaced by Phe, why has this happened so infrequently? We compared the properties of purified endogenous Dictyostelium actin and mutant constructs with Tyr-53 replaced by Phe, Ala, Glu, Trp, and Leu. The Y53F mutant did not differ significantly from endogenous actin in any of the properties assayed, but the Y53A and Y53E mutants differed substantially; affinity for DNase I was reduced, the rate of nucleotide exchange was increased, the critical concentration for polymerization was increased, filament elongation was inhibited, and polymerized actin was in the form of small oligomers and imperfect filaments. Growth and/or development of cells expressing these actin mutants were also inhibited. The Trp and Leu mutations had lesser but still significant effects on cell phenotype and the biochemical properties of the purified actins. We conclude that either Tyr or Phe is required to maintain the functional conformations of the DNase I-binding loop (D-loop) in both G- and F-actin, and that the conformation of the D-loop affects not only the properties that directly involve the D-loop (binding to DNase I and polymerization) but also allosterically modifies the conformation of the nucleotide-binding cleft, thus increasing the rate of nucleotide exchange. The apparent evolutionary "preference" for Tyr at position 53 may be the result of Tyr allowing dynamic modification of the D-loop conformation by phosphorylation (Baek, K., Liu, X., Ferron, F., Shu, S., Korn, E. D., and Dominguez, R. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 11748-11753) with effects similar, but not identical, to those of the Ala and Glu mutations.

摘要

除了 323 个已知肌动蛋白序列中的 11 个外,其余序列在位置 53 都有 Tyr,而这 11 个例外具有保守取代 Phe,这引发了以下问题。Tyr-53 的关键作用是什么?如果它可以被 Phe 取代,为什么这种情况发生得如此罕见?我们比较了具有 Tyr-53 被 Phe、Ala、Glu、Trp 和 Leu 取代的纯化内源性 Dictyostelium 肌动蛋白和突变体构建体的性质。在测试的所有性质中,Y53F 突变体与内源性肌动蛋白没有显著差异,但 Y53A 和 Y53E 突变体差异很大;DNase I 的亲和力降低,核苷酸交换的速度增加,聚合的临界浓度增加,纤维伸长受到抑制,聚合的肌动蛋白呈小寡聚体和不完美的纤维形式。表达这些肌动蛋白突变体的细胞的生长和/或发育也受到抑制。Trp 和 Leu 突变对细胞表型和纯化肌动蛋白的生化性质也有较小但仍显著的影响。我们得出的结论是,Tyr 或 Phe 都需要维持 G- 和 F-肌动蛋白中 DNase I 结合环 (D 环) 的功能构象,并且 D 环的构象不仅影响直接涉及 D 环的性质(与 DNase I 的结合和聚合),而且还变构修饰核苷酸结合裂隙的构象,从而增加核苷酸交换的速度。位置 53 处 Tyr 的明显进化“偏好”可能是由于 Tyr 允许通过磷酸化动态修饰 D 环构象(Baek, K., Liu, X., Ferron, F., Shu, S., Korn, E. D., and Dominguez, R. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 11748-11753),其效果类似于但不完全等同于 Ala 和 Glu 突变。

相似文献

1
Mutation of actin Tyr-53 alters the conformations of the DNase I-binding loop and the nucleotide-binding cleft.
J Biol Chem. 2010 Mar 26;285(13):9729-9739. doi: 10.1074/jbc.M109.073452. Epub 2010 Jan 25.
3
Modulation of actin structure and function by phosphorylation of Tyr-53 and profilin binding.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11748-53. doi: 10.1073/pnas.0805852105. Epub 2008 Aug 8.
5
Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments.
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13694-9. doi: 10.1073/pnas.0606321103. Epub 2006 Aug 30.
8
Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate.
Biochem Biophys Res Commun. 2013 Nov 29;441(4):844-8. doi: 10.1016/j.bbrc.2013.10.144. Epub 2013 Nov 6.
9
Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin.
FEBS J. 2010 Sep;277(18):3812-22. doi: 10.1111/j.1742-4658.2010.07782.x. Epub 2010 Aug 13.
10
Solution properties of tetramethylrhodamine-modified G-actin.
Biophys J. 2003 Oct;85(4):2466-75. doi: 10.1016/S0006-3495(03)74669-4.

引用本文的文献

1
From amino-acid to disease: the effects of oxidation on actin-myosin interactions in muscle.
J Muscle Res Cell Motil. 2023 Dec;44(4):225-254. doi: 10.1007/s10974-023-09658-0. Epub 2023 Oct 8.
3
Oxidative hotspots on actin promote skeletal muscle weakness in rheumatoid arthritis.
JCI Insight. 2019 Mar 28;5(9):126347. doi: 10.1172/jci.insight.126347.
5
Actin Tyrosine-53-Phosphorylation in Neuronal Maturation and Synaptic Plasticity.
J Neurosci. 2016 May 11;36(19):5299-313. doi: 10.1523/JNEUROSCI.2649-15.2016.
6
Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?
Acta Crystallogr F Struct Biol Commun. 2015 May;71(Pt 5):500-13. doi: 10.1107/S2053230X1500391X. Epub 2015 Apr 16.
7
Biochemical and biological properties of cortexillin III, a component of Dictyostelium DGAP1-cortexillin complexes.
Mol Biol Cell. 2014 Jul 1;25(13):2026-38. doi: 10.1091/mbc.E13-08-0457. Epub 2014 May 7.
8
Structural differences explain diverse functions of Plasmodium actins.
PLoS Pathog. 2014 Apr 17;10(4):e1004091. doi: 10.1371/journal.ppat.1004091. eCollection 2014 Apr.
9
10

本文引用的文献

1
Nucleotide-dependent conformational states of actin.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12723-8. doi: 10.1073/pnas.0902092106. Epub 2009 Jul 20.
2
The nature of the globular- to fibrous-actin transition.
Nature. 2009 Jan 22;457(7228):441-5. doi: 10.1038/nature07685.
3
Structural biology: actin in a twist.
Nature. 2009 Jan 22;457(7228):389-90. doi: 10.1038/457389a.
4
Expression and purification of soluble His(6)-tagged TEV protease.
Methods Mol Biol. 2009;498:297-307. doi: 10.1007/978-1-59745-196-3_19.
5
Crystal structures of monomeric actin bound to cytochalasin D.
J Mol Biol. 2008 Dec 26;384(4):848-64. doi: 10.1016/j.jmb.2008.09.082. Epub 2008 Oct 10.
6
Modulation of actin structure and function by phosphorylation of Tyr-53 and profilin binding.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11748-53. doi: 10.1073/pnas.0805852105. Epub 2008 Aug 8.
8
Nucleotide effects on the structure and dynamics of actin.
Biophys J. 2007 Aug 15;93(4):1277-83. doi: 10.1529/biophysj.107.109215. Epub 2007 May 25.
9
Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments.
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13694-9. doi: 10.1073/pnas.0606321103. Epub 2006 Aug 30.
10
Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states.
J Biol Chem. 2006 Oct 20;281(42):31909-19. doi: 10.1074/jbc.M601973200. Epub 2006 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验