Suppr超能文献

与底物类似物阿卡波糖和麦芽糖结合及未结合时结晶的嗜盐芽孢杆菌α淀粉酶的结构

Structure of Bacillus halmapalus alpha-amylase crystallized with and without the substrate analogue acarbose and maltose.

作者信息

Lyhne-Iversen Louise, Hobley Timothy J, Kaasgaard Svend G, Harris Pernille

机构信息

Department of Chemistry, Technical University of Denmark, Building 207, DK-2800 Kgs. Lyngby, Denmark.

出版信息

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Sep 1;62(Pt 9):849-54. doi: 10.1107/S174430910603096X. Epub 2006 Aug 26.

Abstract

Recombinant Bacillus halmapalus alpha-amylase (BHA) was studied in two different crystal forms. The first crystal form was obtained by crystallization of BHA at room temperature in the presence of acarbose and maltose; data were collected at cryogenic temperature to a resolution of 1.9 A. It was found that the crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 47.0, b = 73.5, c = 151.1 A. A maltose molecule was observed and found to bind to BHA and previous reports of the binding of a nonasaccharide were confirmed. The second crystal form was obtained by pH-induced crystallization of BHA in a MES-HEPES-boric acid buffer (MHB buffer) at 303 K; the solubility of BHA in MHB has a retrograde temperature dependency and crystallization of BHA was only possible by raising the temperature to at least 298 K. Data were collected at cryogenic temperature to a resolution of 2.0 A. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 38.6, b = 59.0, c = 209.8 A. The structure was solved using molecular replacement. The maltose-binding site is described and the two structures are compared. No significant changes were seen in the structure upon binding of the substrates.

摘要

对重组嗜盐芽孢杆菌α-淀粉酶(BHA)的两种不同晶体形式进行了研究。第一种晶体形式是在阿卡波糖和麦芽糖存在的情况下,于室温下使BHA结晶得到的;在低温下收集数据,分辨率达到1.9 Å。发现该晶体属于空间群P2(1)2(1)2(1),晶胞参数为a = 47.0、b = 73.5、c = 151.1 Å。观察到一个麦芽糖分子并发现它与BHA结合,证实了之前关于九糖结合的报道。第二种晶体形式是通过在303 K的MES-HEPES-硼酸缓冲液(MHB缓冲液)中对BHA进行pH诱导结晶得到的;BHA在MHB中的溶解度具有反常的温度依赖性,只有将温度提高到至少298 K才能使BHA结晶。在低温下收集数据,分辨率达到2.0 Å。该晶体属于空间群P2(1)2(1)2(1),晶胞参数为a = 38.6、b = 59.0、c = 209.8 Å。使用分子置换法解析了结构。描述了麦芽糖结合位点并比较了两种结构。结合底物后结构未观察到显著变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/511d/2242873/2f838579b105/f-62-00849-fig1.jpg

相似文献

1
Structure of Bacillus halmapalus alpha-amylase crystallized with and without the substrate analogue acarbose and maltose.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Sep 1;62(Pt 9):849-54. doi: 10.1107/S174430910603096X. Epub 2006 Aug 26.
2
Structure of a Bacillus halmapalus family 13 alpha-amylase, BHA, in complex with an acarbose-derived nonasaccharide at 2.1 A resolution.
Acta Crystallogr D Biol Crystallogr. 2005 Feb;61(Pt 2):190-3. doi: 10.1107/S0907444904027118. Epub 2005 Jan 19.
4
Monoclinic crystal form of Aspergillus niger alpha-amylase in complex with maltose at 1.8 angstroms resolution.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Aug 1;62(Pt 8):716-21. doi: 10.1107/S1744309106024729. Epub 2006 Jul 24.
5
Crystal structure of Bacillus subtilis alpha-amylase in complex with acarbose.
J Bacteriol. 2003 Dec;185(23):6981-4. doi: 10.1128/JB.185.23.6981-6984.2003.
8
Crystallization, data collection and data processing of maltose-binding protein (MalE) from the phytopathogen Xanthomonas axonopodis pv. citri.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Feb 1;65(Pt 2):105-7. doi: 10.1107/S1744309108041833. Epub 2009 Jan 7.

引用本文的文献

1
Exploring a novel GH13_5 α-amylase from Jeotgalibacillus malaysiensis D5 for raw starch hydrolysis.
AMB Express. 2024 Jun 14;14(1):71. doi: 10.1186/s13568-024-01722-3.
2
Structural and functional adaptation in extremophilic microbial α-amylases.
Biophys Rev. 2022 Jan 24;14(2):499-515. doi: 10.1007/s12551-022-00931-z. eCollection 2022 Apr.
3
Identifying carbohydrate-active enzymes of Cutaneotrichosporon oleaginosus using systems biology.
Microb Cell Fact. 2021 Oct 28;20(1):205. doi: 10.1186/s12934-021-01692-2.
5
Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.
PLoS One. 2016 Aug 9;11(8):e0160112. doi: 10.1371/journal.pone.0160112. eCollection 2016.
6
Structural Dissection of the Maltodextrin Disproportionation Cycle of the Arabidopsis Plastidial Disproportionating Enzyme 1 (DPE1).
J Biol Chem. 2015 Dec 11;290(50):29834-53. doi: 10.1074/jbc.M115.682245. Epub 2015 Oct 26.
7
α-Amylase: an enzyme specificity found in various families of glycoside hydrolases.
Cell Mol Life Sci. 2014 Apr;71(7):1149-70. doi: 10.1007/s00018-013-1388-z. Epub 2013 Jun 27.
8
Molecular characterization of the bacterial community in a potato phytosphere.
Microbes Environ. 2013;28(3):295-305. doi: 10.1264/jsme2.me13006. Epub 2013 Jun 8.
9
Altered large-ring cyclodextrin product profile due to a mutation at Tyr-172 in the amylomaltase of Corynebacterium glutamicum.
Appl Environ Microbiol. 2012 Oct;78(20):7223-8. doi: 10.1128/AEM.01366-12. Epub 2012 Aug 3.

本文引用的文献

1
Structure of a Bacillus halmapalus family 13 alpha-amylase, BHA, in complex with an acarbose-derived nonasaccharide at 2.1 A resolution.
Acta Crystallogr D Biol Crystallogr. 2005 Feb;61(Pt 2):190-3. doi: 10.1107/S0907444904027118. Epub 2005 Jan 19.
3
Refinement of macromolecular structures by the maximum-likelihood method.
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55. doi: 10.1107/S0907444996012255.
4
Automated refinement of protein models.
Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129-47. doi: 10.1107/S0907444992008886.
5
The Protein Data Bank.
Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235.
7
Main-chain bond lengths and bond angles in protein structures.
J Mol Biol. 1993 Jun 20;231(4):1049-67. doi: 10.1006/jmbi.1993.1351.
8
Improved methods for building protein models in electron density maps and the location of errors in these models.
Acta Crystallogr A. 1991 Mar 1;47 ( Pt 2):110-9. doi: 10.1107/s0108767390010224.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验