Lea M A, Luke A, Assad A, Ayyala S
Department of Biochemistry and Molecular Biology, UMDNJ, New Jersey Medical School, Newark 07103.
Chem Biol Interact. 1990;75(1):49-59. doi: 10.1016/0009-2797(90)90021-e.
The influence of orotic acid on the incorporation of precursors into nucleic acids was studied in mice and rats and in isolated cells. In vivo, orotate levels were modified by two diets which are known to increase the rate of pyrimidine nucleotide synthesis in rat liver. Of these diets, a 1% orotate diet had greater inhibitory effects than an arginine-deficient diet on the incorporation of [3H]orotate into RNA of mouse kidney than mouse liver. This contrasted with the situation in the rat where there was a greater effect in the liver than the kidney. The situation in the rat was more readily interpreted than in the mouse in terms of previously established effects of these diets on ribonucleotide pool sizes. However, studies using [3H]adenosine as a precursor for incorporation into RNA suggested that even in the mouse the effects of orotate were on pool sizes rather than an inhibitory effect on RNA synthesis. The incorporation of [3H]thymidine into DNA was inhibited by orotate to a similar degree in cultured HTC hepatoma cells and a line of rat liver epithelial cells. An effect on DNA synthesis rather than solely on pool sizes was suggested by the observation that the pool size of dTTP was not increased by 5 mM orotate under conditions in which there was a four-fold increase in the level of UTP in HTC cells. An inhibitory effect of orotate on DNA synthesis was further supported by an observation of decreased incorporation of [3H]deoxyadenosine into DNA and a lower rate of cellular proliferation.