Suppr超能文献

纳秒级脉冲电场对细胞弹性的影响。

Effects of nanosecond pulse electric fields on cellular elasticity.

作者信息

Dutta Diganta, Asmar Anthony, Stacey Michael

机构信息

Institute of Micro and Nanotechnology, Mechanical and Aerospace Engineering Department, Old Dominion University, Norfolk, VA, USA.

Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.

出版信息

Micron. 2015 May;72:15-20. doi: 10.1016/j.micron.2015.01.004. Epub 2015 Feb 13.

Abstract

We investigated the effects of a single 60 nanosecond pulsed electric field (nsPEF) of low (15 kV/cm) and high (60 kV/cm) field strengths on cellular morphology and membrane elasticity in Jurkat cells using fluorescent microscopy and atomic force microscopy (AFM). We performed force displacement measurements on cells using AFM and calculated the Young's modulus for membrane elasticity. Differential effects were observed depending upon pulsing conditions. We found that a single nsPEF of low field strength did not induce any apparent cytoskeletal breakdown and had minor morphological changes. Interestingly, force measurements and calculation of Young's modulus showed a significant decrease in membrane elasticity. A single nsPEF of high field strength induced stark morphological changes due to disruption of the actin cytoskeleton and a marked decrease in elasticity likely caused by irreversible membrane damage. We suggest that the cellular morphology is mainly dependent on stabilization by the actin cytoskeleton, while the elasticity changes are partially dependent on the cytoskeletal integrity.

摘要

我们使用荧光显微镜和原子力显微镜(AFM)研究了低场强(15 kV/cm)和高场强(60 kV/cm)的单个60纳秒脉冲电场(nsPEF)对Jurkat细胞的细胞形态和膜弹性的影响。我们使用AFM对细胞进行了力位移测量,并计算了膜弹性的杨氏模量。根据脉冲条件观察到了不同的效应。我们发现,低场强的单个nsPEF不会引起任何明显的细胞骨架破坏,且形态变化较小。有趣的是,力测量和杨氏模量计算显示膜弹性显著降低。高场强的单个nsPEF由于肌动蛋白细胞骨架的破坏而引起明显的形态变化,弹性显著降低可能是由不可逆的膜损伤所致。我们认为,细胞形态主要依赖于肌动蛋白细胞骨架的稳定作用,而弹性变化部分依赖于细胞骨架的完整性。

相似文献

1
Effects of nanosecond pulse electric fields on cellular elasticity.
Micron. 2015 May;72:15-20. doi: 10.1016/j.micron.2015.01.004. Epub 2015 Feb 13.
2
Elasticity and tumorigenic characteristics of cells in a monolayer after nanosecond pulsed electric field exposure.
Eur Biophys J. 2017 Sep;46(6):567-580. doi: 10.1007/s00249-017-1205-y. Epub 2017 Apr 1.
3
Energy dissipation mapping of cancer cells.
Micron. 2018 Feb;105:24-29. doi: 10.1016/j.micron.2017.11.005. Epub 2017 Nov 14.
4
Disruption of the actin cortex contributes to susceptibility of mammalian cells to nanosecond pulsed electric fields.
Bioelectromagnetics. 2014 May;35(4):262-72. doi: 10.1002/bem.21845. Epub 2014 Feb 20.
6
Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival.
Bioelectrochemistry. 2011 Oct;82(2):131-4. doi: 10.1016/j.bioelechem.2011.06.002. Epub 2011 Jun 16.
7
Cell mechanics using atomic force microscopy-based single-cell compression.
Langmuir. 2006 Sep 12;22(19):8151-5. doi: 10.1021/la060561p.
8
Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
Acta Biomater. 2015 Nov;27:224-235. doi: 10.1016/j.actbio.2015.08.028. Epub 2015 Aug 20.
9
Regulation of intracellular calcium concentration by nanosecond pulsed electric fields.
Biochim Biophys Acta. 2009 May;1788(5):1168-75. doi: 10.1016/j.bbamem.2009.02.006. Epub 2009 Feb 20.

引用本文的文献

4
Biomechanical and Biophysical Properties of Breast Cancer Cells Under Varying Glycemic Regimens.
Breast Cancer (Auckl). 2020 Nov 12;14:1178223420972362. doi: 10.1177/1178223420972362. eCollection 2020.
5
Cytoskeletal Disruption after Electroporation and Its Significance to Pulsed Electric Field Therapies.
Cancers (Basel). 2020 Apr 30;12(5):1132. doi: 10.3390/cancers12051132.
6
Cellular Processes Involved in Jurkat Cells Exposed to Nanosecond Pulsed Electric Field.
Int J Mol Sci. 2019 Nov 21;20(23):5847. doi: 10.3390/ijms20235847.
7
Tubulin's response to external electric fields by molecular dynamics simulations.
PLoS One. 2018 Sep 19;13(9):e0202141. doi: 10.1371/journal.pone.0202141. eCollection 2018.
8
[Mechanism of ablation with nanosecond pulsed electric field].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2015 Nov;44(6):678-83. doi: 10.3785/j.issn.1008-9292.2015.11.13.

本文引用的文献

1
AFM sensing cortical actin cytoskeleton destabilization during plasma membrane electropermeabilization.
Cytoskeleton (Hoboken). 2014 Oct;71(10):587-94. doi: 10.1002/cm.21194. Epub 2014 Oct 30.
2
Destabilization induced by electropermeabilization analyzed by atomic force microscopy.
Biochim Biophys Acta. 2013 Sep;1828(9):2223-9. doi: 10.1016/j.bbamem.2013.05.035. Epub 2013 Jun 10.
3
Primary pathways of intracellular Ca(2+) mobilization by nanosecond pulsed electric field.
Biochim Biophys Acta. 2013 Mar;1828(3):981-9. doi: 10.1016/j.bbamem.2012.11.032. Epub 2012 Dec 5.
4
Atomic force microscopy characterization of collagen 'nanostraws' in human costal cartilage.
Micron. 2013 Jan;44:483-7. doi: 10.1016/j.micron.2012.10.006. Epub 2012 Oct 22.
5
Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival.
Bioelectrochemistry. 2011 Oct;82(2):131-4. doi: 10.1016/j.bioelechem.2011.06.002. Epub 2011 Jun 16.
6
Nanosecond electric pulses trigger actin responses in plant cells.
Biochem Biophys Res Commun. 2009 Sep 25;387(3):590-5. doi: 10.1016/j.bbrc.2009.07.072. Epub 2009 Jul 18.
7
Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane.
Biochem Biophys Res Commun. 2009 Jul 24;385(2):181-6. doi: 10.1016/j.bbrc.2009.05.035. Epub 2009 May 18.
9
Membrane permeabilization and cell damage by ultrashort electric field shocks.
Arch Biochem Biophys. 2007 Sep 1;465(1):109-18. doi: 10.1016/j.abb.2007.05.003. Epub 2007 May 24.
10
Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 1):021904. doi: 10.1103/PhysRevE.74.021904. Epub 2006 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验