Suppr超能文献

用随机系数模型分析变化的非线性模式。

Analysis of nonlinear patterns of change with random coefficient models.

作者信息

Cudeck Robert, Harring Jeffrey R

机构信息

Psychology Department, Ohio State University, Columbus, Ohio 43210, USA.

出版信息

Annu Rev Psychol. 2007;58:615-37. doi: 10.1146/annurev.psych.58.110405.085520.

Abstract

Nonlinear patterns of change arise frequently in the analysis of repeated measures from longitudinal studies in psychology. The main feature of nonlinear development is that change is more rapid in some periods than in others. There generally also are strong individual differences, so although there is a general similarity of patterns for different persons over time, individuals exhibit substantial heterogeneity in their particular response. To describe data of this kind, researchers have extended the random coefficient model to accommodate nonlinear trajectories of change. It can often produce a statistically satisfying account of subject-specific development. In this review we describe and illustrate the main ideas of the nonlinear random coefficient model with concrete examples.

摘要

在心理学纵向研究的重复测量分析中,经常会出现非线性变化模式。非线性发展的主要特征是,在某些时期变化比其他时期更快。通常也存在强烈的个体差异,所以尽管不同个体随时间推移的模式总体上有相似性,但个体在其特定反应中表现出很大的异质性。为了描述这类数据,研究人员扩展了随机系数模型以适应非线性变化轨迹。它常常能对个体特定的发展给出统计学上令人满意的解释。在本综述中,我们用具体例子描述并阐释非线性随机系数模型的主要思想。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验