Suppr超能文献

《漫游者指南:重复测量方法的模型选择基础》

The Hitchhiker's guide to longitudinal models: A primer on model selection for repeated-measures methods.

机构信息

Methodology & Statistics Department, Institute of Psychology, Leiden University, Leiden, Netherlands; Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, United States; Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands.

Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia; Department of Psychology, University of Oregon, Eugene, United States.

出版信息

Dev Cogn Neurosci. 2023 Oct;63:101281. doi: 10.1016/j.dcn.2023.101281. Epub 2023 Jul 26.

Abstract

Longitudinal data are becoming increasingly available in developmental neuroimaging. To maximize the promise of this wealth of information on how biology, behavior, and cognition change over time, there is a need to incorporate broad and rigorous training in longitudinal methods into the repertoire of developmental neuroscientists. Fortunately, these models have an incredibly rich tradition in the broader developmental sciences that we can draw from. Here, we provide a primer on longitudinal models, written in a beginner-friendly (and slightly irreverent) manner, with a particular focus on selecting among different modeling frameworks (e.g., multilevel versus latent curve models) to build the theoretical model of development a researcher wishes to test. Our aims are three-fold: (1) lay out a heuristic framework for longitudinal model selection, (2) build a repository of references that ground each model in its tradition of methodological development and practical implementation with a focus on connecting researchers to resources outside traditional neuroimaging journals, and (3) provide practical resources in the form of a codebook companion demonstrating how to fit these models. These resources together aim to enhance training for the next generation of developmental neuroscientists by providing a solid foundation for future forays into advanced modeling applications.

摘要

纵向数据在发展神经影像学中变得越来越普遍。为了充分利用这些关于生物、行为和认知随时间变化的丰富信息,需要将广泛而严格的纵向方法培训纳入发展神经科学家的技能组合中。幸运的是,我们可以从更广泛的发展科学中汲取这些模型的丰富传统。在这里,我们以一种初学者友好(略带不敬)的方式提供了关于纵向模型的入门指南,特别关注从不同的建模框架(例如,多层次模型与潜在曲线模型)中进行选择,以构建研究人员希望测试的发展理论模型。我们的目标有三个:(1)为纵向模型选择制定启发式框架,(2)建立参考资料库,为每个模型奠定其在方法论发展和实际实施方面的传统基础,重点是将研究人员与传统神经影像学期刊之外的资源联系起来,(3)以代码手册伴侣的形式提供实用资源,展示如何拟合这些模型。这些资源旨在通过为未来深入研究高级建模应用提供坚实的基础,为下一代发展神经科学家的培训提供增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8677/10412784/80b5f6385d5f/fx1011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验