哺乳动物细胞中的核ADP-核糖基化反应:我们如今处于何方,又将走向何处?
Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?
作者信息
Hassa Paul O, Haenni Sandra S, Elser Michael, Hottiger Michael O
机构信息
Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
出版信息
Microbiol Mol Biol Rev. 2006 Sep;70(3):789-829. doi: 10.1128/MMBR.00040-05.
Since poly-ADP ribose was discovered over 40 years ago, there has been significant progress in research into the biology of mono- and poly-ADP-ribosylation reactions. During the last decade, it became clear that ADP-ribosylation reactions play important roles in a wide range of physiological and pathophysiological processes, including inter- and intracellular signaling, transcriptional regulation, DNA repair pathways and maintenance of genomic stability, telomere dynamics, cell differentiation and proliferation, and necrosis and apoptosis. ADP-ribosylation reactions are phylogenetically ancient and can be classified into four major groups: mono-ADP-ribosylation, poly-ADP-ribosylation, ADP-ribose cyclization, and formation of O-acetyl-ADP-ribose. In the human genome, more than 30 different genes coding for enzymes associated with distinct ADP-ribosylation activities have been identified. This review highlights the recent advances in the rapidly growing field of nuclear mono-ADP-ribosylation and poly-ADP-ribosylation reactions and the distinct ADP-ribosylating enzyme families involved in these processes, including the proposed family of novel poly-ADP-ribose polymerase-like mono-ADP-ribose transferases and the potential mono-ADP-ribosylation activities of the sirtuin family of NAD(+)-dependent histone deacetylases. A special focus is placed on the known roles of distinct mono- and poly-ADP-ribosylation reactions in physiological processes, such as mitosis, cellular differentiation and proliferation, telomere dynamics, and aging, as well as "programmed necrosis" (i.e., high-mobility-group protein B1 release) and apoptosis (i.e., apoptosis-inducing factor shuttling). The proposed molecular mechanisms involved in these processes, such as signaling, chromatin modification (i.e., "histone code"), and remodeling of chromatin structure (i.e., DNA damage response, transcriptional regulation, and insulator function), are described. A potential cross talk between nuclear ADP-ribosylation processes and other NAD(+)-dependent pathways is discussed.
自从40多年前发现多聚ADP核糖以来,单ADP核糖基化和多聚ADP核糖基化反应的生物学研究取得了重大进展。在过去十年中,很明显ADP核糖基化反应在广泛的生理和病理生理过程中发挥着重要作用,包括细胞间和细胞内信号传导、转录调控、DNA修复途径和基因组稳定性的维持、端粒动态、细胞分化和增殖以及坏死和凋亡。ADP核糖基化反应在系统发育上很古老,可以分为四大类:单ADP核糖基化、多聚ADP核糖基化、ADP核糖环化以及O-乙酰基-ADP核糖的形成。在人类基因组中,已经鉴定出30多个不同的基因,这些基因编码与不同ADP核糖基化活性相关的酶。本综述重点介绍了快速发展的核单ADP核糖基化和多聚ADP核糖基化反应领域的最新进展,以及参与这些过程的不同ADP核糖基化酶家族,包括新提出的类似多聚ADP核糖聚合酶的单ADP核糖转移酶家族和依赖NAD(+)的组蛋白脱乙酰酶沉默调节蛋白家族的潜在单ADP核糖基化活性。特别关注不同的单ADP核糖基化和多聚ADP核糖基化反应在生理过程中的已知作用,如有丝分裂、细胞分化和增殖、端粒动态以及衰老,还有“程序性坏死”(即高迁移率族蛋白B1释放)和凋亡(即凋亡诱导因子穿梭)。描述了这些过程中涉及的潜在分子机制,如信号传导、染色质修饰(即“组蛋白密码”)和染色质结构重塑(即DNA损伤反应、转录调控和绝缘子功能)。还讨论了核ADP核糖基化过程与其他依赖NAD(+)的途径之间潜在的相互作用。
相似文献
Microbiol Mol Biol Rev. 2006-9
Mol Cell. 2015-6-18
J Nutr. 2009-10-7
Aging (Albany NY). 2011-9
Biochimie. 1995
Mol Aspects Med. 2013-4-25
引用本文的文献
Biomolecules. 2025-8-15
EJNMMI Radiopharm Chem. 2025-7-3
Histochem Cell Biol. 2025-6-28
Geroscience. 2025-5-6
Acta Neuropathol Commun. 2025-4-1
J Biol Chem. 2024-11
Adv Exp Med Biol. 2024
本文引用的文献
Mol Cells. 2006-2-28
Biochim Biophys Acta. 2006-2
J Neurobiol. 2006-3