Suppr超能文献

组氨酸-142残基电荷置换对连接蛋白43通道电压门控的影响。

Effect of charge substitutions at residue his-142 on voltage gating of connexin43 channels.

作者信息

Shibayama Junko, Gutiérrez Cristina, González Daniel, Kieken Fabien, Seki Akiko, Carrión Jesus Requena, Sorgen Paul L, Taffet Steven M, Barrio Luis C, Delmar Mario

机构信息

Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.

出版信息

Biophys J. 2006 Dec 1;91(11):4054-63. doi: 10.1529/biophysj.106.085787. Epub 2006 Sep 8.

Abstract

Previous studies indicate that the carboxyl terminal of connexin43 (Cx43CT) is involved in fast transjunctional voltage gating. Separate studies support the notion of an intramolecular association between Cx43CT and a region of the cytoplasmic loop (amino acids 119-144; referred to as "L2"). Structural analysis of L2 shows two alpha-helical domains, each with a histidine residue in its sequence (H126 and H142). Here, we determined the effect of H142 replacement by lysine, alanine, and glutamate on the voltage gating of Cx43 channels. Mutation H142E led to a significant reduction in the frequency of occurrence of the residual state and a prolongation of dwell open time. Macroscopically, there was a large reduction in the fast component of voltage gating. These results resembled those observed for a mutant lacking the carboxyl terminal (CT) domain. NMR experiments showed that mutation H142E significantly decreased the Cx43CT-L2 interaction and disrupted the secondary structure of L2. Overall, our data support the hypothesis that fast voltage gating involves an intramolecular particle-receptor interaction between CT and L2. Some of the structural constrains of fast voltage gating may be shared with those involved in the chemical gating of Cx43.

摘要

先前的研究表明,连接蛋白43的羧基末端(Cx43CT)参与快速跨连接电压门控。另外的研究支持Cx43CT与细胞质环区域(氨基酸119 - 144;称为“L2”)之间存在分子内关联的观点。对L2的结构分析显示有两个α - 螺旋结构域,每个结构域在其序列中都有一个组氨酸残基(H126和H142)。在此,我们确定了用赖氨酸、丙氨酸和谷氨酸取代H142对Cx43通道电压门控的影响。突变H142E导致残余状态出现频率显著降低以及开放驻留时间延长。从宏观上看,电压门控的快速成分大幅减少。这些结果与缺乏羧基末端(CT)结构域的突变体所观察到的结果相似。核磁共振实验表明,突变H142E显著降低了Cx43CT - L2相互作用并破坏了L2的二级结构。总体而言,我们的数据支持这样的假设,即快速电压门控涉及CT和L2之间的分子内粒子 - 受体相互作用。快速电压门控的一些结构限制可能与Cx43化学门控所涉及的限制相同。

相似文献

1
Effect of charge substitutions at residue his-142 on voltage gating of connexin43 channels.
Biophys J. 2006 Dec 1;91(11):4054-63. doi: 10.1529/biophysj.106.085787. Epub 2006 Sep 8.
2
Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating.
Circ Res. 2002 Mar 8;90(4):450-7. doi: 10.1161/hh0402.105667.
3
Intramolecular interactions mediate pH regulation of connexin43 channels.
Biophys J. 1996 Mar;70(3):1294-302. doi: 10.1016/S0006-3495(96)79686-8.
4
Modifications in the biophysical properties of connexin43 channels by a peptide of the cytoplasmic loop region.
Circ Res. 2004 Aug 20;95(4):e22-8. doi: 10.1161/01.RES.0000140737.62245.c5. Epub 2004 Jul 29.
6
pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains.
J Biol Chem. 2002 Sep 27;277(39):36706-14. doi: 10.1074/jbc.M207016200. Epub 2002 Jul 31.
7
PH regulation of connexin43: molecular analysis of the gating particle.
Biophys J. 1996 Sep;71(3):1273-84. doi: 10.1016/S0006-3495(96)79328-1.
8
Molecular dissection of transjunctional voltage dependence in the connexin-32 and connexin-43 junctions.
Biophys J. 1999 Sep;77(3):1374-83. doi: 10.1016/S0006-3495(99)76986-9.
9
pH-dependent dimerization of the carboxyl terminal domain of Cx43.
Biophys J. 2004 Jul;87(1):574-81. doi: 10.1529/biophysj.103.039230.

引用本文的文献

1
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease.
Int J Mol Sci. 2021 Apr 23;22(9):4413. doi: 10.3390/ijms22094413.
3
Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications.
Pharmacol Rev. 2017 Oct;69(4):396-478. doi: 10.1124/pr.115.012062.
4
GAP junctional communication in brain secondary organizers.
Dev Growth Differ. 2016 Jun;58(5):446-55. doi: 10.1111/dgd.12297. Epub 2016 Jun 8.
5
Determinants of Cx43 Channel Gating and Permeation: The Amino Terminus.
Biophys J. 2016 Jan 5;110(1):127-40. doi: 10.1016/j.bpj.2015.10.054.
6
Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation?
Mediators Inflamm. 2015;2015:257471. doi: 10.1155/2015/257471. Epub 2015 Sep 3.
7
Voltage regulation of connexin channel conductance.
Yonsei Med J. 2015 Jan;56(1):1-15. doi: 10.3349/ymj.2015.56.1.1.
8
Motifs in the permeation pathway of connexin channels mediate voltage and Ca (2+) sensing.
Front Physiol. 2014 Mar 31;5:113. doi: 10.3389/fphys.2014.00113. eCollection 2014.

本文引用的文献

1
Identification of a novel peptide that interferes with the chemical regulation of connexin43.
Circ Res. 2006 Jun 9;98(11):1365-72. doi: 10.1161/01.RES.0000225911.24228.9c. Epub 2006 May 11.
3
Modifications in the biophysical properties of connexin43 channels by a peptide of the cytoplasmic loop region.
Circ Res. 2004 Aug 20;95(4):e22-8. doi: 10.1161/01.RES.0000140737.62245.c5. Epub 2004 Jul 29.
4
An evaluation of detergents for NMR structural studies of membrane proteins.
J Biomol NMR. 2004 Jan;28(1):43-57. doi: 10.1023/B:JNMR.0000012875.80898.8f.
5
Sequence-specific resonance assignment of the carboxyl terminal domain of Connexin43.
J Biomol NMR. 2002 Jul;23(3):245-6. doi: 10.1023/a:1019892719979.
6
pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains.
J Biol Chem. 2002 Sep 27;277(39):36706-14. doi: 10.1074/jbc.M207016200. Epub 2002 Jul 31.
7
Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating.
Circ Res. 2002 Mar 8;90(4):450-7. doi: 10.1161/hh0402.105667.
8
Conductance and permeability of the residual state of connexin43 gap junction channels.
J Gen Physiol. 2002 Feb;119(2):171-85. doi: 10.1085/jgp.119.2.171.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验