Suppr超能文献

TASSER-Lite:一种用于蛋白质比较建模的自动化工具。

TASSER-Lite: an automated tool for protein comparative modeling.

作者信息

Pandit Shashi Bhushan, Zhang Yang, Skolnick Jeffrey

机构信息

Center for the Study of Systems Biology, School of Biology, Georgia Institute of Technology, Atlanta, GA 30318, USA.

出版信息

Biophys J. 2006 Dec 1;91(11):4180-90. doi: 10.1529/biophysj.106.084293. Epub 2006 Sep 8.

Abstract

This study involves the development of a rapid comparative modeling tool for homologous sequences by extension of the TASSER methodology, developed for tertiary structure prediction. This comparative modeling procedure was validated on a representative benchmark set of proteins in the Protein Data Bank composed of 901 single domain proteins (41-200 residues) having sequence identities between 35-90% with respect to the template. Using a Monte Carlo search scheme with the length of runs optimized for weakly/nonhomologous proteins, TASSER often provides appreciable improvement in structure quality over the initial template. However, on average, this requires approximately 29 h of CPU time per sequence. Since homologous proteins are unlikely to require the extent of conformational search as weakly/nonhomologous proteins, TASSER's parameters were optimized to reduce the required CPU time to approximately 17 min, while retaining TASSER's ability to improve structure quality. Using this optimized TASSER (TASSER-Lite), we find an average improvement in the aligned region of approximately 10% in root mean-square deviation from native over the initial template. Comparison of TASSER-Lite with the widely used comparative modeling tool MODELLER showed that TASSER-Lite yields final models that are closer to the native. TASSER-Lite is provided on the web at (http://cssb.biology.gatech.edu/skolnick/webservice/tasserlite/index.html).

摘要

本研究涉及通过扩展用于三级结构预测的TASSER方法,开发一种用于同源序列的快速比较建模工具。这种比较建模程序在蛋白质数据库中一组具有代表性的蛋白质基准集上进行了验证,该基准集由901个单结构域蛋白质(41 - 200个残基)组成,与模板的序列同一性在35% - 90%之间。使用针对弱同源/非同源蛋白质优化了运行长度的蒙特卡罗搜索方案,TASSER通常能在初始模板的基础上显著提高结构质量。然而,平均而言,每个序列需要大约29小时的CPU时间。由于同源蛋白质不太可能像弱同源/非同源蛋白质那样需要广泛的构象搜索,因此对TASSER的参数进行了优化,以将所需的CPU时间减少到大约17分钟,同时保留TASSER提高结构质量的能力。使用这种优化后的TASSER(TASSER-Lite),我们发现在与天然结构的均方根偏差方面,比对区域相对于初始模板平均有大约10%的改善。将TASSER-Lite与广泛使用的比较建模工具MODELLER进行比较表明,TASSER-Lite产生的最终模型更接近天然结构。TASSER-Lite可在网页(http://cssb.biology.gatech.edu/skolnick/webservice/tasserlite/index.html)上获取。

相似文献

1
TASSER-Lite: an automated tool for protein comparative modeling.
Biophys J. 2006 Dec 1;91(11):4180-90. doi: 10.1529/biophysj.106.084293. Epub 2006 Sep 8.
2
Ab initio protein structure prediction using chunk-TASSER.
Biophys J. 2007 Sep 1;93(5):1510-8. doi: 10.1529/biophysj.107.109959. Epub 2007 May 11.
3
4
Ab initio modeling of small proteins by iterative TASSER simulations.
BMC Biol. 2007 May 8;5:17. doi: 10.1186/1741-7007-5-17.
5
Analysis of TASSER-based CASP7 protein structure prediction results.
Proteins. 2007;69 Suppl 8:90-7. doi: 10.1002/prot.21649.
6
Protein structure prediction by pro-Sp3-TASSER.
Biophys J. 2009 Mar 18;96(6):2119-27. doi: 10.1016/j.bpj.2008.12.3898.
7
Automated structure prediction of weakly homologous proteins on a genomic scale.
Proc Natl Acad Sci U S A. 2004 May 18;101(20):7594-9. doi: 10.1073/pnas.0305695101. Epub 2004 May 4.
8
Template-based modeling and free modeling by I-TASSER in CASP7.
Proteins. 2007;69 Suppl 8:108-17. doi: 10.1002/prot.21702.
9
Structure modeling of all identified G protein-coupled receptors in the human genome.
PLoS Comput Biol. 2006 Feb;2(2):e13. doi: 10.1371/journal.pcbi.0020013. Epub 2006 Feb 17.

引用本文的文献

5
6
A comparison of different functions for predicted protein model quality assessment.
J Comput Aided Mol Des. 2016 Jul;30(7):553-8. doi: 10.1007/s10822-016-9924-1. Epub 2016 Aug 3.
7
eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands.
J Comput Aided Mol Des. 2013 Jun;27(6):551-67. doi: 10.1007/s10822-013-9663-5. Epub 2013 Jul 10.
10
RaptorX: exploiting structure information for protein alignment by statistical inference.
Proteins. 2011;79 Suppl 10(Suppl 10):161-71. doi: 10.1002/prot.23175. Epub 2011 Oct 11.

本文引用的文献

1
2
TM-align: a protein structure alignment algorithm based on the TM-score.
Nucleic Acids Res. 2005 Apr 22;33(7):2302-9. doi: 10.1093/nar/gki524. Print 2005.
3
The protein structure prediction problem could be solved using the current PDB library.
Proc Natl Acad Sci U S A. 2005 Jan 25;102(4):1029-34. doi: 10.1073/pnas.0407152101. Epub 2005 Jan 14.
4
Scoring function for automated assessment of protein structure template quality.
Proteins. 2004 Dec 1;57(4):702-10. doi: 10.1002/prot.20264.
5
Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins.
Biophys J. 2004 Oct;87(4):2647-55. doi: 10.1529/biophysj.104.045385.
6
Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm.
Proteins. 2004 Aug 15;56(3):502-18. doi: 10.1002/prot.20106.
7
Automated structure prediction of weakly homologous proteins on a genomic scale.
Proc Natl Acad Sci U S A. 2004 May 18;101(20):7594-9. doi: 10.1073/pnas.0305695101. Epub 2004 May 4.
8
SPICKER: a clustering approach to identify near-native protein folds.
J Comput Chem. 2004 Apr 30;25(6):865-71. doi: 10.1002/jcc.20011.
9
Exploiting evolutionary relationships for predicting protein structures.
Biotechnol Bioeng. 2003 Dec 30;84(7):756-62. doi: 10.1002/bit.10850.
10
TOUCHSTONE: a unified approach to protein structure prediction.
Proteins. 2003;53 Suppl 6:469-79. doi: 10.1002/prot.10551.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验