Suppr超能文献

eThread:一种高度优化的基于机器学习的元线程和蛋白质三级结构建模方法。

eThread: a highly optimized machine learning-based approach to meta-threading and the modeling of protein tertiary structures.

机构信息

Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America.

出版信息

PLoS One. 2012;7(11):e50200. doi: 10.1371/journal.pone.0050200. Epub 2012 Nov 21.

Abstract

Template-based modeling that employs various meta-threading techniques is currently the most accurate, and consequently the most commonly used, approach for protein structure prediction. Despite the evident progress in this field, accurate structure models cannot be constructed for a significant fraction of gene products, thus the development of new algorithms is required. Here, we describe the development, optimization and large-scale benchmarking of eThread, a highly accurate meta-threading procedure for the identification of structural templates and the construction of corresponding target-to-template alignments. eThread integrates ten state-of-the-art threading/fold recognition algorithms in a local environment and extensively uses various machine learning techniques to carry out fully automated template-based protein structure modeling. Tertiary structure prediction employs two protocols based on widely used modeling algorithms: Modeller and TASSER-Lite. As a part of eThread, we also developed eContact, which is a Bayesian classifier for the prediction of inter-residue contacts and eRank, which effectively ranks generated multiple protein models and provides reliable confidence estimates as structure quality assessment. Excluding closely related templates from the modeling process, eThread generates models, which are correct at the fold level, for >80% of the targets; 40-50% of the constructed models are of a very high quality, which would be considered accurate at the family level. Furthermore, in large-scale benchmarking, we compare the performance of eThread to several alternative methods commonly used in protein structure prediction. Finally, we estimate the upper bound for this type of approach and discuss the directions towards further improvements.

摘要

基于模板的建模采用了各种元线程技术,是目前最准确的,也是最常用的蛋白质结构预测方法。尽管在这个领域取得了明显的进展,但对于很大一部分基因产物,仍然无法构建准确的结构模型,因此需要开发新的算法。在这里,我们描述了 eThread 的开发、优化和大规模基准测试,eThread 是一种用于识别结构模板和构建相应目标到模板比对的高度准确的元线程程序。eThread 在本地环境中集成了十种最先进的线程/折叠识别算法,并广泛使用各种机器学习技术来进行全自动基于模板的蛋白质结构建模。三级结构预测采用基于广泛使用的建模算法的两种协议:Modeller 和 TASSER-Lite。作为 eThread 的一部分,我们还开发了 eContact,这是一种用于预测残基间接触的贝叶斯分类器,以及 eRank,它有效地对生成的多个蛋白质模型进行排序,并提供可靠的置信度估计作为结构质量评估。eThread 在建模过程中排除了密切相关的模板,为>80%的目标生成了在折叠水平上正确的模型;40-50%的构建模型具有非常高的质量,这在家族水平上被认为是准确的。此外,在大规模基准测试中,我们将 eThread 的性能与蛋白质结构预测中常用的几种替代方法进行了比较。最后,我们估计了这种方法的上限,并讨论了进一步改进的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeca/3503980/f3e15530d630/pone.0050200.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验